A fast-growing worldwide interest is directed toward green energies. Due to the huge costs of wind farms establishment, the location for wind farms should be carefully determined to achieve the optimum return of investment. Consequently, researches have been conducted to investigate land suitability prior to wind plants development. The generated data from the sensors detecting a potential land can be very huge, fast in generation, heterogeneous, and incomplete, which become seriously difficult to process using traditional approaches. In this paper, we propose Trio-V Wind Analyzer (WA) that handles data volume, variety, and veracity to identify the most suitable location for wind energy development in any study area using a modified version of multicriteria evaluation (MCE). It utilizes principal component analysis (PCA) and our proposed Double-Reduction Optimum Apriori (DROA) to analyze most of the environmental, physical, and economical criteria. In addition, Trio-V WA recommends the suitable turbines and proposes the adequate turbines’ layout distribution, predicting the expected power generated based on the recommended turbine’s specifications using a regression technique. Thus, Trio-V WA provides an integral system of land evaluation for potential investment in wind farms. Experiments indicate 80% and 95% average accuracy for land suitability degree and power prediction, respectively, with efficient performance.

References

1.
Al Sam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
An Investigation of Wind Farm Power Production for Various Atmospheric Boundary Layer Heights
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051216
.
2.
Kasaei
,
M. J.
,
Gandomkar
,
M.
, and
Nikoukar
,
J.
,
2017
, “
Optimal Operational Scheduling of Renewable Energy Sources Using Teaching–Learning Based Optimization Algorithm by Virtual Power Plant
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062003
.
3.
Joselin Herbert, G. M., Iniyan, S., and Amutha, D.,
2014
, “
A Review of Technical Issues on the Development of Wind Farms
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
619
641
.
4.
Kamholz
,
J.
,
2008
, “Suitability of Wind Power for Texas Urban Areas,” University of Texas, Austin, TX, Report No.
CRP 386
https://soa.utexas.edu/sites/default/disk/SuitabilityWindPowerTexas.pdf.
6.
Diamantoulakis, P. D., Kapinas, V. M., and Karagiannidis, G. K.,
2015
, “
Big Data Analytics for Dynamic Energy Management in Smart Grids
,”
Big Data Res.
,
2
(3), pp. 94–101.
7.
Ularu, E. G., Puican, F. C., Apostu, A., and Velicanu, M.,
2012
, “
Perspectives on Big Data and Big Data Analytics
,”
Database Syst. J.
,
3
(
4
), pp.
3
14
.http://dbjournal.ro/archive/10/10_1.pdf
8.
Ackermann
,
T.
,
2012
,
Wind Power in Power Systems
, Vol.
140
,
Wiley
,
Chichester, UK
.
9.
Aydin
,
N.
,
Kentel
,
E.
, and
Duzgun
,
S.
,
2010
, “
GIS-Based Environmental Assessment of Wind Energy Systems for Spatial Planning: A Case Study From Western Turkey
,”
Renewable Sustainable Energy Rev.
,
14
(
1
), pp.
364
373
.
10.
Baban
,
S.
, and
Parry
,
T.
,
2001
, “
Developing and Applying a GIS-Assisted Approach to Locating Wind Farms in the UK
,”
Renewable Energy
,
24
(
1
), pp.
59
71
.
11.
Janke
,
J. R.
,
2010
, “
Multicriteria GIS Modeling of Wind and Solar Farms in Colorado
,”
Renewable Energy
,
35
(
10
), pp.
2228
2234
.
12.
Rodman
,
L. C.
, and
Meentemeyer
,
R. K.
,
2006
, “
A Geographic Analysis of Wind Turbine Placement in Northern California
,”
Energy Policy
,
34
(15), pp.
2137
2149
.
13.
van Haaren
,
R. V.
, and
Fthenakis
,
V.
,
2011
, “
GIS-Based Wind Farm Site Selection Using Spatial Multi-Criteria Analysis (SMCA): Evaluating the Case for New York State
,”
Renewable Sustainable Energy Rev.
,
15
(7), pp.
3332
3340
.
14.
Van Hoesen
,
J.
, and
Letendre
,
S.
,
2010
, “
Evaluating Potential Renewable Energy Resources in Poultney, Vermont: A GIS-Based Approach to Supporting Rural Community Energy Planning
,”
Renewable Energy
,
35
(9), pp.
2114
2122
.
15.
Niu
,
K.
,
Zhao
,
F.
, and
Zhang
,
S.
,
2013
, “
A Fast Classification Algorithm for Big Data Based on KNN
,”
J. Appl. Sci.
,
13
(12), pp.
2208
2212
.
16.
Murdopo
,
A.
,
2013
, “
Distributed Decision Tree Learning for Mining Big Data Streams
,”
MS thesis
, Polytechnic University of Catalonia, Barcelona, Spain.http://people.ac.upc.edu/leandro/emdc/arinto-emdc-thesis.pdf
17.
De Francisci Morales
,
G.
,
2013
, “
SAMOA: A Platform for Mining Big Data Streams
,”
22nd International Conference on World Wide Web
(
WWW
), Rio de Janeiro, Brazil, May 13–17, pp. 777–778.
18.
Ma
,
Y.
,
Xie
,
K.
,
Dong
,
J.
,
Tai
,
H.
, and
Hu
,
B.
,
2017
, “
Optimal Generation Maintenance Schedule for Bundled Wind–Thermal Generation System
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
014501
.
19.
Samorani
,
M.
,
2013
, “
The Wind Farm Layout Optimization Problem
,”
Handbook of Wind Power Systems
, Springer, Berlin, pp.
21
38
.
20.
Mosetti
,
G.
,
Poloni
,
C.
, and
Diviacco
,
B.
,
1994
, “
Optimization of Wind Turbine positioning in Largewind Farms by Means of a Genetic Algorithm
,”
J. Wind Eng. Ind. Aerodyn.
,
51
(1), pp.
105
116
.
21.
Vladislavleva
,
E.
, Friedrich, T., Neumann, F., and Wagner, M.,
2013
, “
Predicting the Energy Output of Wind Farms Based on Weather Data: Important Variables and Their Correlation
,”
Renewable Energy
,
50
, pp.
236
243
.
22.
Kusiak
,
A.
,
Zheng
,
H.
, and
Song
,
Z.
,
2009
, “
Short-Term Prediction of Wind Farm Power: A Data Mining Approach
,”
Energy Convers.
,
24
(
1
), pp.
125
136
.
23.
Aymen
,
F.
,
2017
, “
Internal Fuzzy Hybrid Charger System for a Hybrid Electrical Vehicle
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012003
.
24.
Watanabe
,
T.
, and
Fujioka
,
R.
,
2012
, “
Fuzzy Association Rules Mining Algorithm Based on Equivalence Redundancy of Items
,”
IEEE International Conference on Systems, Man, and Cybernetics
(
SMC
), Seoul, South Korea, Oct. 14–17, pp.
1960
1965
.
25.
Márquez-Nolasco
,
A.
,
Conde-Gutiérrez
,
R.
,
Hernandez
,
J.
,
Huicochea
,
A.
,
Siqueiros
,
J.
, and
Rodriguez
,
O.
,
2017
, “
Optimization and Estimation of the Thermal Energy of an Absorber With Graphite Disks by Using Direct and Inverse Neural Network
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020901
.
26.
Jursa
,
R.
, and
Rohrig
,
K.
,
2008
, “
Short-Term Wind Power Forecasting Using Evolutionary Algorithms for the Auto Mated Specification of Artificial Intelligence Models
,”
Int. J. Forecasting
, 24(4), pp.
694
709
.
27.
Alexiadis
,
M. C.
,
Dokopoulos
,
P. S.
, and
Sahsamanoglou
,
H. S.
,
1999
, “
Wind Speed and Power Forecasting Based on Spatial Correlation Models
,”
IEEE Trans. Energy Convers.
, 14(3), pp.
836
842
.
28.
Barbounis
,
T. G.
, and
Theocharis
,
J. B.
,
2007
, “
A Locally Recurrent Fuzzy Neural Network With Application to the Wind Speed Prediction Using Spatial Correlation
,”
Neurocomputing
, 70(7–9), pp.
1525
1542
.
29.
Kusiak
,
A.
, and
Verma
,
A.
,
2011
, “
Prediction of Status Patterns of Wind Turbines: A Data-Mining Approach
,”
ASME J. Sol. Energy Eng.
,
133
(
1
), p.
011008
.
30.
Tharwat
,
A.
,
2016
, “
Principal Component Analysis—A Tutorial
,”
Int. J. Appl. Pattern Recognit.
,
3
(
3
), pp.
197
240
.
31.
Wei
,
L.
, and
Zhang
,
W. X.
,
2013
, “
Rmb/Usd Exchange Rate Prediction Based on Support Vector Machine and Principal Component Analysis
,”
Inf. Technol. J.
,
12
(
16
), pp.
3660
3664
.
32.
Giannotti
,
F.
,
Lakshmanan
,
L. V.
, and
Monreale
,
2013
, “
Privacy-Preserving Mining of Association Rules From Outsourced Transaction Databases
,”
IEEE Syst. J.
,
7
(
3
), pp.
385
395
.
33.
Rollins
,
S.
, and
Banerjee
,
N.
,
2014
, “
Using Rule Mining to Understand Appliance Energy Consumption Patterns
,”
2014 IEEE International Conference on Pervasive Computing and Communications
(
PerCom
), Budapest, Hungary, Mar. 24–28, pp.
29
37
.
34.
Al-Yahyai
,
S.
, and
Charabi
,
2012
, “
Wind Farm Land Suitability Indexing Using Multi-Criteria Analysis
,”
Renewable Energy
,
44
, pp.
80
87
.
35.
Ansah
,
R. H.
,
Sorooshian
,
S.
, and
Bin Mustafa
,
S.
,
2015
, “Analytic Hierarchy Process Decision Making Algorithm,”
Global J. Pure Appl. Math.
,
11
(4), pp. 2403–2410https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2683706.
36.
Eminoglu
,
U.
, and
Ayasun
,
S.
,
2014
, “
Modeling and Design Optimization of Variable-Speed Wind Turbine Systems
,”
Energies
, 7(1), pp.
402
419
.
37.
Cohen
,
J.
,
2013
,
Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences
,
Routledge
, Abingdon, UK.
38.
Fawzy
,
D.
,
Moussa
,
S.
, and
Badr
,
N.
,
2017
, “
An Approach for Erosion and Power Loss Prediction of Wind Turbines Using Big Data Analytics
,”
Fifth International Workshop on Data Analytics for Renewable Energy Integration (DARE 2017)
(in Conjunction With ECML/PKDD 2017), Skopje, Macedonia, Sept. 18–21.
39.
Mortensen
,
N. G.
,
Hansen
,
J. C.
,
Badger
,
J.
,
Jørgensen
,
B. H.
,
Hasager
,
C. B.
,
Paulsen
,
U. S.
,
Hansen
,
O. F.
,
Enevoldsen
,
K.
,
Youssef
,
L. G.
,
Said
,
U. S.
,
El-Salam Moussa
,
A. A.
,
Mahmoud
,
M. A.
,
El Sayed Yousef
,
A.
,
Awad
,
A. M.
,
Ahmed
,
M. A. R.
,
Sayed
,
M. A. M.
,
Korany
,
M. H.
, and
Tarad
,
M. A. B.
,
2006
, “
Wind Atlas for Egypt: Measurements, Micro- and Mesoscale Modelling
,”
European Wind Energy Conference and Exhibition
(
EWEA
), Athens, Greece, Feb. 27–Mar. 2, pp. 1–10.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.486.2414&rep=rep1&type=pdf
40.
Mukhopadhyay
,
A.
,
Maulik
,
U.
,
Bandyopadhyay
,
S.
, and
Coello
,
C. A. C.
,
2014
, “
A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I
,”
IEEE Trans. Evol. Comput.
,
18
(
1
), pp.
4
19
.
You do not currently have access to this content.