A large potential is contributed to the energetic utilization of biomass, whereby thermochemical gasification seems to be especially interesting. In order to contribute to a better understanding of the thermochemical conversion process in the gasifier, mathematical models are used. An intensive effort is made in development of mathematical models describing the gasification process and a large number of models, considerably differing in their degree of simplification, and their applications are reported in literature. In the present article, a brief review of models applied, mainly focused on equilibrium models, is provided and a robust and flexible modified stoichiometric equilibrium model, for modeling a novel gasifier, is presented.

References

References
1.
Puig-Arnavat
,
M.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2010
, “
Review and Analysis of Biomass Gasification Models
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
2841
2851
.
2.
Gómez-Barea
,
A.
, and
Leckner
,
B.
,
2010
, “
Modeling of Biomass Gasification in Fluidized Bed
,”
Prog. Energy Combust. Sci.
,
36
(
4
), pp.
444
509
.
3.
Baruah
,
D.
, and
Baruah
,
D.
,
2014
, “
Modeling of Biomass Gasification: A Review
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
806
815
.
4.
Patra
,
T. K.
, and
Sheth
,
P. N.
,
2015
, “
Biomass Gasification Models for Downdraft Gasifier: A State-of-the-Art Review
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
583
593
.
5.
Villetta
,
M. L.
,
Costa
,
M.
, and
Massarotti
,
N.
,
2017
, “
Modelling Approaches to Biomass Gasification: A Review With Emphasis on the Stoichiometric Method
,”
Renewable Sustainable Energy Rev.
,
74
, pp.
71
88
.
6.
Smith
,
J. M.
,
Van Ness
,
H. C.
, and
Abbott
,
M. M.
,
2005
,
Introduction to Chemical Engineering Thermodynamics
,
7th ed.
,
McGraw-Hill
, New York.
7.
Baehr
,
H. D.
, and
Kabelac
,
S.
,
2006
,
Thermodynamik - Grundlagen Und Technische Anwendungen
,
13th ed.
,
Springer-Verlag
,
Berlin
.
8.
Florin
,
N. H.
, and
Harris
,
A. T.
,
2007
, “
Hydrogen Production From Biomass Coupled With Carbon Dioxide Capture: The Implications of Thermodynamic Equilibrium
,”
Int. J. Hydrogen Energy
,
32
(
17
), pp.
4119
4134
.
9.
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J. J. G.
,
2003
, “
Thermodynamics of Gas-Char Reactions: First and Second Law Analysis
,”
Chem. Eng. Sci.
,
58
(
3–6
), pp.
1003
1011
.
10.
Mirmoshtaghi
,
G.
,
Li
,
H.
,
Thorin
,
E.
, and
Dahlquist
,
E.
,
2016
, “
Evaluation of Different Biomass Gasification Modeling Approaches for Fluidized Bed Gasifiers
,”
Biomass Bioenergy
,
91
, pp.
69
82
.
11.
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J. J. G.
,
2007
, “
From Coal to Biomass Gasification: Comparison of Thermodynamic Efficiency
,”
Energy
,
32
(
7
), pp.
1248
1259
.
12.
Sharma
,
A. K.
,
2008
, “
Equilibrium Modeling of Global Reduction Reactions for a Downdraft (Biomass) Gasifier
,”
Energy Convers. Manage.
,
49
(
4
), pp.
832
842
.
13.
Vitasari
,
C. R.
,
Jurascik
,
M.
, and
Ptasinskiv
,
K. J.
,
2011
, “
Exergy Analysis of Biomass-to-Synthetic Natural Gas (SNG) Process Via Indirect Gasification of Various Biomass Feedstock
,”
Energy
,
36
(
6
), pp.
3825
3837
.
14.
Buragohain
,
B.
,
Mahanta
,
P.
, and
Moholkar
,
V. S.
,
2010
, “
Thermodynamic Optimization of Biomass Gasification for Decentralized Power Generation and Fischer-Tropsch Synthesis
,”
Energy
,
35
(
6
), pp.
2557
2579
.
15.
Melgar
,
A.
,
Prez
,
J. F.
,
Laget
,
H.
, and
Horillo
,
A.
,
2007
, “
Thermochemical Equilibrium Modelling of a Gasifying Process
,”
Energy Convers. Manage.
,
48
(
1
), pp.
59
67
.
16.
Mathieu
,
P.
, and
Dubuisson
,
R.
,
2002
, “
Performance Analysis of a Biomass Gasifier
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
129
1299
.
17.
Haryanto
,
A.
,
Fernando
,
S. D.
,
Pordesimo
,
L. O.
, and
Adhikari
,
S.
,
2009
, “
Upgrading of Syngas Derived From Biomass Gasification: A Thermodynamic Analysis
,”
Biomass Bioenergy
,
33
(
5
), pp.
882
889
.
18.
Rodriguez-Alejandro
,
D. A.
,
Nam
,
H.
,
Maglinao
,
A. L.
,
Capareda
,
S. C.
, and
Aguilera-Alvarado
,
A. F.
,
2016
, “
Development of a Modified Equilibrium Model for Biomass Pilot-Scale Fluidized Bed Gasifier Performance Predictions
,”
Energy
,
115
(Pt. 1), pp.
1092
1108
.
19.
Li
,
X.
,
Grace
,
J. R.
,
Watkinson
,
A. P.
,
Lim
,
C. J.
, and
Ergüdenler
,
A.
,
2001
, “
Equilibrium Modeling of Gasification: A Free Energy Minimization Approach and Its Application to a Circulating Fluidized Bed Coal Gasifier
,”
Fuel
,
80
(
2
), pp.
195
207
.
20.
Li
,
X. T.
,
Grace
,
J. R.
,
Lim
,
C. J.
,
Watkinson
,
A. P.
,
Chen
,
H. P.
, and
Kim
,
J. R.
,
2004
, “
Biomass Gasification in a Circulating Fluidized Bed
,”
Biomass Bioenergy
,
26
(
2
), pp.
171
193
.
21.
Gröbl
,
T.
,
Walter
,
H.
, and
Haider
,
M.
,
2012
, “
Biomass Steam Gasification for Production of SNG—Process Design and Sensitivity Analysis
,”
Appl. Energy
,
97
, pp.
451
461
.
22.
Schuster
,
G.
,
Löffler
,
G.
,
Weigl
,
K.
, and
Hofbauer
,
H.
,
2001
, “
Biomass Steam Gasification—An Extensive Parametric Modeling Study
,”
Bioresour. Technol.
,
77
(
1
), pp.
71
79
.
23.
Panopoulos
,
K. D.
,
Fryda
,
L. E.
,
Karl
,
J.
,
Poulou
,
S.
, and
Kakaras
,
E.
,
2006
, “
High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification—Part I: Modelling and Feasibility Study
,”
J. Power Sources
,
159
(
1
), pp.
570
585
.
24.
Fryda
,
L.
,
Panopoulos
,
K.
,
Karl
,
J.
, and
Kakaras
,
E.
,
2008
, “
Exergetic Analysis of Solid Oxide Fuel Cell and Biomass Gasification Integration With Heat Pipes
,”
Energy
,
33
(
2
), pp.
292
299
.
25.
Juraščk
,
M.
,
Sues
,
A.
, and
Ptasinski
,
K. J.
,
2010
, “
Exergy Analysis of Synthetic Natural Gas Production Method From Biomass
,”
Energy
,
35
(
2
), pp.
880
888
.
26.
Bang-Møller
,
C.
, and
Rokni
,
M.
,
2010
, “
Thermodynamic Performance Study of Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid Systems
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2330
2339
.
27.
Bang-Møller
,
C.
,
Rokni
,
M.
, and
Elmegaard
,
B.
,
2011
, “
Exergy Analysis and Optimization of a Biomass Gasification, Solid Oxide Fuel Cell and Micro Gas Turbine Hybrid System
,”
Energy
,
36
(
8
), pp.
4740
4752
.
28.
van der Meijden
,
C. M.
,
Veringa
,
H. J.
, and
Rabou
,
L. P. L. M.
,
2010
, “
The Production of Synthetic Natural Gas (SNG): A Comparison of Three Wood Gasification Systems for Energy Balance and Overall Efficiency
,”
Biomass Bioenergy
,
34
(
3
), pp.
302
311
.
29.
Damiani
,
L.
, and
Trucco
,
A.
,
2009
, “
Biomass Gasification Modelling: An Equilibrium Model, Modified to Reproduce the Operation of Actual Reactors
,”
ASME
Paper No. GT2009-60323.
30.
Jarungthammachote
,
S.
, and
Dutta
,
A.
,
2007
, “
Thermodynamic Equilibrium Model and Second Law Analysis of a Downdraft Waste Gasifier
,”
Energy
,
32
(
9
), pp.
1660
1669
.
31.
Huang
,
H.
, and
Ramaswamy
,
S.
,
2009
, “
Modeling Biomass Gasification Using Thermodynamic Equilibrium Approach
,”
Appl. Biochem. Biotechnol.
,
154
(
1–3
), pp.
17
25
.
32.
Loha
,
C.
,
Chatterjee
,
P. K.
, and
Chattopadhyay
,
H.
,
2011
, “
Performance of Fluidized Bed Steam Gasification of Biomass—Modeling and Experiment
,”
Energy Convers. Manage.
,
52
(
3
), pp.
1583
1588
.
33.
Pröll
,
T.
, and
Hofbauer
,
H.
,
2008
, “
Development and Application of a Simulation Tool for Biomass Gasification Based Processes
,”
Int. J. Chem. React. Eng.
,
6
(
1
), pp.
1
56
.
34.
Pröll
,
T.
, and
Hofbauer
,
H.
,
2008
, “
H2 Rich Syngas by Selective CO2 Removal From Biomass Gasification in a Dual Fluidized Bed System—Process Modelling Approach
,”
Fuel Process. Technol.
,
89
(
11
), pp.
1207
1217
.
35.
Gumz
,
W.
,
1950
,
Gas Producers and Blast Furnaces
,
Wiley
,
New York
.
36.
Duret
,
A.
,
Friedli
,
C.
, and
Marchal
,
F.
,
2005
, “
Process Design of Synthetic Natural Gas (SNG) Production Using Wood Gasification
,”
J. Cleaner Prod.
,
13
(
15
), pp.
1434
1446
.
37.
Gassner
,
M.
, and
Marchal
,
F.
,
2009
, “
Thermo-Economic Process Model for Thermochemical Production of Synthetic Natural Gas (SNG) From Lignocellulosic Biomass
,”
Biomass Bioenergy
,
33
(
11
), pp.
1587
1604
.
38.
Pröll
,
T.
,
2004
, “
Potentiale der Wirbelschichtdampfvergasung fester Biomasse - Modellierung und Simulation auf Basis der Betriebserfahrungen am Biomassekraftwerk Güssing
,” Ph.D. thesis, Vienna University of Technology, Vienna, Austria.
39.
Gröbl
,
T.
,
Walter
,
H.
, and
Haider
,
M.
,
2011
, “
Biomass Steam Gasification—Mathematical Modeling of an Innovative Pressurized Gasification Process
,”
Second International Conference on Heat and Mass Transfer
, Chennai, India, Dec. 27–30, pp.
66
71
.
40.
Gröbl
,
T.
,
Walter
,
H.
,
Haider
,
M.
, and
Gallmetzer
,
G.
,
2011
, “
Biomass Steam Gasification—Mathematical Modeling and Analysis of the Thermo-Chemical Gasification Process
,”
Third International Conference on Polygeneration Strategies
, pp.
261
268
.
41.
Gómez-Barea
,
A.
,
Thunman
,
H.
,
Leckner
,
B.
,
Campoy
,
M.
, and
Ollero
,
P.
,
2007
, “
Prediction of Gas Composition in Biomass Gasifiers
,”
Second International Congress of Energy and Environment Engineering and Management
, Badajoz, Spain, June 6–8, Paper No.
ER-030
.
42.
Salem
,
A. M.
, and
Paul
,
M. C.
,
2018
, “
An Integrated Kinetic Model for Downdraft Gasifier Based on a Novel Approach That Optimises the Reduction Zone of Gasifier
,”
Biomass Bioenergy
,
109
, pp.
172
181
.
43.
Rao
,
M. S.
,
Singh
,
S. P.
,
Sodha
,
M. S.
,
Dubey
,
A. K.
, and
Shyam
,
M.
,
2004
, “
Stoichiometric, Mass, Energy and Exergy Balance Analysis of Countercurrent Fixed-Bed Gasification of Post-Consumer Residues
,”
Biomass Bioenergy
,
27
(
2
), pp.
155
171
.
44.
Ratnadhariya
,
J. K.
, and
Channiwala
,
S. A.
,
2009
, “
Three Zone Equilibrium and Kinetic Free Modeling of Biomass Gasifier—A Novel Approach
,”
Renewable Energy
,
34
(
4
), pp.
1050
1058
.
45.
Tepper
,
H.
,
2005
, “
Zur Vergasung von Rest- und Abfallholz in Wirbelschichtreaktoren für dezentrale Energieversorgungsanlagen
,” Ph.D. thesis, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany.
46.
Ngo
,
S. I.
,
Nguyen
,
T. D.
,
Lim
,
Y.-I.
,
Song
,
B.-H.
,
Lee
,
U.-D.
,
Choi
,
Y.-T.
, and
Song
,
J.-H.
,
2011
, “
Performance Evaluation for Dual Circulating Fluidized-Bed Steam Gasifier of Biomass Using Quasi-Equilibrium Three-Stage Gasification Model
,”
Appl. Energy
,
88
(
12
), pp.
5208
5220
.
47.
Nguyen
,
T. D. B.
,
Ngo
,
S. I.
,
Lim
,
Y.-I.
,
Lee
,
J. W.
,
Lee
,
U.-D.
, and
Song
,
B.-H.
,
2012
, “
Three-Stage Steady-State Model for Biomass Gasification in a Dual Circulating Fluidized-Bed
,”
Energy Convers. Manage.
,
54
(
1
), pp.
100
112
.
48.
Sadaka
,
S. S.
,
Ghaly
,
A. E.
, and
Sabbah
,
M. A.
,
2002
, “
Two Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part I: Model Development
,”
Biomass Bioenergy
,
22
(
6
), pp.
439
462
.
49.
Kuo
,
P.-C.
,
Wu
,
W.
, and
Chen
,
W.-H.
,
2014
, “
Gasification Performances of Raw and Torrefied Biomass in a Downdraft Fixed Bed Gasifier Using Thermodynamic Analysis
,”
Fuel
,
117
(Pt. B), pp.
1231
1241
.
50.
Karl, J.
,
2001
, “
Vorrichtung zur Vergasung biogener Einsatzstoffe
,” Technical University of Munich, Germany, Patent No. Patentschrift DE19926202 C1.
51.
Metz
,
T.
,
2006
, “
Allotherme Vergasung von Biomasse in indirekt beheizten Wirbelschichten
,” Ph.D. thesis, Technische Universität München, Munich, Germany.
52.
Schmitz
,
W.
,
Karl
,
J.
, and
Hein
,
D.
,
2000
, “
Allothermal Fluidized Bed Gasification—Possibilities for the Implementation of the Heat Input in Fluidized Beds
,”
First World Conference on Biomass for Energy and Industry
, Sevilla, Spain, June 5–9, pp.
1566
1569
.
53.
Karl
,
J.
, and
Hein
,
D.
,
2002
, “
Performance Characteristics of the Biomass Heatpipe Reformer
,”
12th European Conference on Biomass for Energy and Climate Protection
, Amsterdam, The Netherlands, June 17–21.
54.
Karellas
,
S.
,
Karl
,
J.
, and
Kakaras
,
E.
,
2008
, “
An Innovative Biomass Gasification Process and Its Coupling With Microturbine and Fuel Cell Systems
,”
Energy
,
33
(
2
), pp.
284
291
.
55.
Karl
,
J.
,
Gallmetzer
,
G.
,
Hochleithner
,
T.
,
Kienberger
,
T.
,
Schweiger
,
A.
, and
Kroener
,
M.
,
2009
, “
Small-Scale Generation of Substitute Natural Gas
,”
First International Conference on Polygeneration Strategies
, Vienna, Austria, Sept. 1–4.
56.
Gallmetzer
,
G.
,
Ackermann
,
P.
,
Schweiger
,
A.
,
Kienberger
,
T.
,
Gröbl
,
T.
,
Walter
,
H.
,
Zankl
,
M.
, and
Kröner
,
M.
,
2011
, “
The Agnion Heatpipe-Reformer—Operating Experiences and Evaluation of Fuel Conversion and Syngas Composition
,”
Third International Conference on Polygeneration Strategies
, pp.
13
22
.
57.
Panopoulos
,
K.
,
Fryda
,
L.
,
Karl
,
J.
,
Poulou
,
S.
, and
Kakaras
,
E.
,
2006
, “
High Temperature Solid Oxide Fuel Cell Integrated With Novel Allothermal Biomass Gasification—Part II: Exergy Analysis
,”
J. Power Sources
,
159
(
1
), pp.
586
594
.
58.
Kaltschmitt
,
M.
,
Hartman
,
H.
, and
Hofbauer
,
H.
,
2009
,
Energie Aus Biomasse - Grundlagen, Techniken Und Verfahren
,
2nd ed.
,
Springer-Verlag
,
Berlin
.
59.
Roider
,
J.
,
2002
, “
Kinetic Modeling of Biomass Gasification With Steam in a Fluidized Bed
,” M.S. thesis, Vienna University of Technology, Vienna, Austria.
60.
Di Blasi
,
C.
,
2008
, “
Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis
,”
Prog. Energy Combust. Sci.
,
34
(
1
), pp.
47
90
.
61.
Merrick
,
D.
,
1983
, “
Mathematical Models of the Thermal Decomposition of Coal—1: The Evolution of Volatile Matter
,”
Fuel
,
62
(
5
), pp.
534
539
.
62.
Prasad
,
B. V. R. K.
, and
Kuester
,
J. L.
,
1988
, “
Process Analysis of a Dual Fluidized Bed Biomass Gasification System
,”
Ind. Eng. Chem. Res.
,
27
(
2
), pp.
304
310
.
63.
Sadaka
,
S. S.
,
Ghaly
,
A. E.
, and
Sabbah
,
M. A.
,
2002
, “
Two Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part II: Model Sensitivity
,”
Biomass Bioenergy
,
22
(
6
), pp.
463
477
.
64.
Sadaka
,
S. S.
,
Ghaly
,
A. E.
, and
Sabbah
,
M. A.
,
2002
, “
Two-Phase Biomass Air-Steam Gasification Model for Fluidized Bed Reactors—Part III: Model Validation
,”
Biomass Bioenergy
,
22
(
6
), pp.
479
487
.
65.
Higman
,
C.
, and
van der Burgt
,
M.
,
2003
,
Gasification
,
Elsevier Science
, Amsterdam, The Netherlands.
66.
Barrio
,
M.
,
2002
, “
Experimental Investigation of Small-Scale Gasification of Woody Biomass
,”
Ph.D. thesis
, The Norwegian University of Science and Technology, Trondheim, Norway.
67.
Pröll
,
T.
,
Rauch
,
R.
,
Aichernig
,
C.
, and
Hofbauer
,
H.
,
2007
, “
Fluidized Bed Steam Gasification of Solid Biomass—Performance Characteristics of an 8 MWth Combined Heat and Power Plant
,”
Int. J. Chem. Reactor Eng.
,
5
(
1
), p.
A54
.
68.
Kaushal
,
P.
,
Abedi
,
J.
, and
Mahinpey
,
N.
,
2010
, “
A Comprehensive Mathematical Model for Biomass Gasification in a Bubbling Fluidized Bed Reactor
,”
Fuel
,
89
(
12
), pp.
3650
3661
.
69.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Meeks
,
E.
, and
Miller
,
J. A.
,
1996
, “
CHEMKIN-III: A FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics
,” Sandia National Laboratories, Livermore, CA, Report No.
SAND96-8216
.
70.
Kienberger
,
T.
,
2010
, “
Methanierung biogener Synthesegase mit Hinblick auf die direkte Umsetzung von hoeheren Kohlenwasserstoffen
,” Ph.D. thesis, Graz University of Technology, Graz, Austria.
71.
Gallmetzer
,
G.
,
Ackermann
,
P.
,
Schweiger
,
A.
,
Kienberger
,
T.
,
Gröbl
,
T.
,
Walter
,
H.
,
Zankl
,
M.
, and
Kröner
,
M.
,
2012
, “
The Agnion Heatpipe-Reformer—Operating Experiences and Evaluation of Fuel Conversion and Syngas Composition
,”
Biomass Convers. Biorefin.
,
2
(
3
), pp.
207
215
.
72.
van den Berg
,
C.
,
2010
, Personal correspondence (unpublished), agnion.
73.
Bolhàr-Nordenkampf
,
M.
,
Rauch
,
R.
,
Bosch
,
K.
,
Aichernig
,
C.
, and
Hofbauer
,
H.
,
2003
, “
Biomass CHP Plant Güssing - Using Gasification for Power Generation
,”
Second Regional Conference on Energy Technology Towards a Clean Envionnment, Conference
(
RCETCE
), Phuket, Thailand, Feb. 12–14, pp.
567
572
.
You do not currently have access to this content.