As compared with the conventional electrical heating pyrolysis, microwave-assisted pyrolysis (MAP) is more rapid and efficient due to its unique heating mechanisms. However, bio-oil production from MAP of biomass is strongly dependent on the operation parameters. Based on the recent researches, this study reviews the effects of the main operation parameters including microwave power, pyrolysis temperature, and pyrolysis time on the bio-oil yield obtained from MAP of biomass. The results show that microwave power, pyrolysis temperature, and pyrolysis time usually increase the bio-oil yield initially and decrease the bio-oil yield finally. The reported optimal microwave powers, pyrolysis temperatures, and pyrolysis times were mainly in the ranges of 300–1500 W, 400–800 °C, and 6–25 min, respectively. The mechanisms for bio-oil produced from MAP of biomass as affected by the main operation parameters were also analyzed.

References

References
1.
FAO
,
2017
, “Annual Population,” Food and Agricultural Organization, Rome, Italy, accessed July 5, 2017, http://faostat3.fao.org/download/O/OA/E
2.
The World Bank
,
2017
, “GDP,” The World Bank Group, Washington, DC, accessed July 5, 2017, http://data.worldbank.org/indicator/NY.GDP.MKTP.CD
3.
Statista,
2017
, “
Statista: Global Gross Domestic Product (GDP) 2020
,” Statista, Inc., New York, accessed July 5, 2017, http://www.statista.com/statistics/268750/global-gross-domestic-product-gdp/
4.
BP,
2017
, “
Statistical Review of World Energy
,” BP Inc., Anchorage, AK, accessed July 5, 2017, http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html
5.
Parker
,
H. W.
,
1981
, “
Engine Fuels From Biomass
,”
ASME J. Energy Resour. Technol.
,
103
(
4
), pp.
344
351
.
6.
Lin
,
J. C. M.
,
2006
, “
Combination of a Biomass Fired Updraft Gasifier and a Stirling Engine for Power Production
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
66
70
.
7.
Dean
,
J.
,
Braun
,
R.
,
Penev
,
M.
,
Kinchin
,
C.
, and
Muñoz
,
D.
,
2011
, “
Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031801
.
8.
Zhang
,
Y.
,
Gao
,
X.
,
Li
,
B.
,
Zhang
,
H.
,
Qi
,
B.
, and
Wu
,
Y.
,
2015
, “
An Expeditious Methodology for Estimating the Exergy of Woody Biomass by Means of Heating Values
,”
Fuel
,
159
, pp.
712
719
.
9.
Güell
,
B. M.
,
Sandquist
,
J.
, and
Sørum
,
L.
,
2012
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
10.
Kan
,
T.
,
Strezov
,
V.
, and
Evans
,
T. J.
,
2016
, “
Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters
,”
Renewable Sustainable Energy Rev.
,
57
, pp.
1126
1140
.
11.
Ferreira
,
S. B.
, and
Pilidis
,
P.
,
2001
, “
Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Fuel
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
291
296
.
12.
Maxwell
,
T. T.
,
Nevill
,
J. D.
,
Ertas
,
A.
, and
Craig
,
J.
,
2005
, “
Biomass Feed System Flow Control Using a Weigh Belt Table
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
71
82
.
13.
Motasemi
,
F.
, and
Afzal
,
M. T.
,
2013
, “
A Review on the Microwave-Assisted Pyrolysis Technique
,”
Renewable Sustainable Energy Rev.
,
28
, pp.
317
330
.
14.
Srinivas
,
T.
,
Gupta
,
A. V. S. S. K. S.
, and
Reddy
,
B. V.
,
2009
, “
Thermodynamic Equilibrium Model and Exergy Analysis of a Biomass Gasifier
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
031801
.
15.
Herbert
,
G. M. J.
, and
Krishnan
,
A. U.
,
2016
, “
Quantifying Environmental Performance of Biomass Energy
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
292
308
.
16.
Srinivas
,
T.
,
Reddy
,
B. V.
, and
Gupta
,
A. V. S. S. K. S.
,
2012
, “
Thermal Performance Prediction of a Biomass Based Integrated Gasification Combined Cycle Plant
,”
ASME J. Energy Resour. Technol
,
134
(
2
), p.
021002
.
17.
Mitianiec
,
W.
,
2017
, “
Co-Combustion of Pulverized Coal and Biomass in Fluidized Bed of Furnace
,”
ASME J. Energy Resour. Technol.
,
139
(
6
), p.
062204
.
18.
Motasemi
,
F.
, and
Ani
,
F. N.
,
2012
, “
A Review on Microwave-Assisted Production of Biodiesel
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
4719
4733
.
19.
Gouli
,
S.
,
Serdari
,
A.
,
Stournas
,
S.
, and
Lois
,
E.
,
2000
, “
Transportation Fuel Substitutes Derived From Biomass
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
39
43
.
20.
Mohan
,
D.
,
Pittman
,
C. U.
, and
Steele
,
P. H.
,
2006
, “
Pyrolysis of Wood/Biomass for Bio-Oil:  A Critical Review
,”
Energy Fuel
,
20
(
3
), pp.
848
889
.
21.
Saber
,
M.
,
Nakhshiniev
,
B.
, and
Yoshikawa
,
K.
,
2016
, “
A Review of Production and Upgrading of Algal Bio-Oil
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
918
930
.
22.
Masimalai
,
S. K.
, and
Nandagopal
,
S.
,
2016
, “
Combined Effect of Oxygen Enrichment and Dual Fueling on the Performance Behavior of a CI Engine Fueled With Pyro Oil–Diesel Blend as Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032206
.
23.
Bridgwater
,
A. V.
,
2012
, “
Review of Fast Pyrolysis of Biomass and Product Upgrading
,”
Biomass Bioenergy
,
38
, pp.
68
94
.
24.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
.
25.
Zhang
,
Y.
,
Chen
,
P.
,
Liu
,
S.
,
Peng
,
P.
,
Min
,
M.
,
Cheng
,
Y.
,
Anderson
,
E.
,
Zhou
,
N.
,
Fan
,
L.
,
Liu
,
C.
,
Chen
,
G.
,
Liu
,
Y.
,
Lei
,
H.
,
Li
,
B.
, and
Ruan
,
R.
,
2017
, “
Effects of Feedstock Characteristics on Microwave-Assisted Pyrolysis—A Review
,”
Bioresour. Technol.
,
230
, pp.
143
151
.
26.
Chen
,
P.
,
Xie
,
Q.
,
Addy
,
M.
,
Zhou
,
W.
,
Liu
,
Y.
,
Wang
,
Y.
,
Cheng
,
Y.
,
Li
,
K.
, and
Ruan
,
R.
,
2016
, “
Utilization of Municipal Solid and Liquid Wastes for Bioenergy and Bioproducts Production
,”
Bioresour. Technol.
,
215
, pp.
163
172
.
27.
Yin
,
C.
,
2012
, “
Microwave-Assisted Pyrolysis of Biomass for Liquid Biofuels Production
,”
Bioresour. Technol.
,
120
, pp.
273
284
.
28.
Lam
,
S. S.
, and
Chase
,
H. A.
,
2012
, “
A Review on Waste to Energy Processes Using Microwave Pyrolysis
,”
Energies
,
5
(
12
), pp.
4209
4232
.
29.
Vamvuka
,
D.
,
2011
, “
Bio-Oil, Solid and Gaseous Biofuels From Biomass Pyrolysis Processes—An Overview
,”
Int. J. Energy Res.
,
35
(
10
), pp.
835
862
.
30.
Bu
,
Q.
,
Lei
,
H.
,
Zacher
,
A. H.
,
Wang
,
L.
,
Ren
,
S.
,
Liang
,
J.
,
Wei
,
Y.
,
Liu
,
Y.
,
Tang
,
J.
,
Zhang
,
Q.
, and
Ruan
,
R.
,
2012
, “
A Review of Catalytic Hydrodeoxygenation of Lignin-Derived Phenols From Biomass Pyrolysis
,”
Bioresour. Technol.
,
124
, pp.
470
477
.
31.
Mushtaq
,
F.
,
Mat
,
R.
, and
Ani
,
F. N.
,
2014
, “
A Review on Microwave Assisted Pyrolysis of Coal and Biomass for Fuel Production
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
555
574
.
32.
Kim
,
J. S.
,
2015
, “
Production, Separation and Applications of Phenolic-Rich Bio-Oil—A Review
,”
Bioresour. Technol.
,
178
, pp.
90
98
.
33.
Papari
,
S.
, and
Hawboldt
,
K.
,
2015
, “
A Review on the Pyrolysis of Woody Biomass to Bio-Oil: Focus on Kinetic Models
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1580
1595
.
34.
Wang
,
Y.
, and
Chen
,
G. Y.
,
2014
, “
A Review of Bio-Oil Production From Sewage Sludge
,”
Adv. Mater. Res.
,
864–867
, pp.
1909
1918
.
35.
Macquarrie
,
D. J.
,
Clark
,
J. H.
, and
Fitzpatrick
,
E.
,
2012
, “
The Microwave Pyrolysis of Biomass
,”
Biofuel Bioprod. Biorefin.
,
6
(
5
), pp.
549
560
.
36.
Huang
,
Y. F.
,
Chiueh
,
P. T.
, and
Lo
,
S. L.
,
2016
, “
A Review on Microwave Pyrolysis of Lignocellulosic Biomass
,”
Sustainable Environ. Res
,
26
(
3
), pp.
103
109
.
37.
Januri
,
Z.
,
Rahman
,
N. B. A.
,
Idris
,
S. S.
,
Matali
,
S.
, and
Manaf
,
S. F. A.
,
2014
, “
Yields Performance of Automotive Paint Sludge Via Microwave Assisted Pyrolysis
,”
Appl. Mech. Mater.
,
548–549
, pp.
191
195
.
38.
Wang
,
N.
,
Tahmasebi
,
A.
,
Yu
,
J.
,
Xu
,
J.
,
Huang
,
F.
, and
Mamaeva
,
A.
,
2015
, “
A Comparative Study of Microwave-Induced Pyrolysis of Lignocellulosic and Algal Biomass
,”
Bioresour. Technol.
,
190
, pp.
89
96
.
39.
Yu
,
F.
,
Ruan
,
R.
, and
Steele
,
P.
,
2009
, “
Microwave Pyrolysis of Corn Stover
,”
Trans. ASABE
,
52
(
5
), pp.
1595
1601
.
40.
Du
,
J.
,
Liu
,
P.
,
Liu
,
Z. H.
,
Sun
,
D. G.
, and
Tao
,
C. Y.
,
2010
, “
Fast Pyrolysis of Biomass for Bio-Oil With Ionic Liquid and Microwave Irradiation
,”
J. Fuel Chem. Technol.
,
38
(
5
), pp.
554
559
.
41.
Zhao
,
X.
,
Wang
,
M.
,
Liu
,
H.
,
Zhao
,
C.
,
Ma
,
C.
, and
Song
,
Z.
,
2013
, “
Effect of Temperature and Additives on the Yields of Products and Microwave Pyrolysis Behaviors of Wheat Straw
,”
J. Anal. Appl. Pyrolysis
,
100
, pp.
49
55
.
42.
Li
,
L.
,
Ma
,
X.
,
Xu
,
Q.
, and
Hu
,
Z.
,
2013
, “
Influence of Microwave Power, Metal Oxides and Metal Salts on the Pyrolysis of Algae
,”
Bioresour. Technol.
,
142
, pp.
469
474
.
43.
Du
,
Z.
,
Li
,
Y.
,
Wang
,
X.
,
Wan
,
Y.
,
Chen
,
Q.
,
Wang
,
C.
,
Lin
,
X.
,
Liu
,
Y.
,
Chen
,
P.
, and
Ruan
,
R.
,
2011
, “
Microwave-Assisted Pyrolysis of Microalgae for Biofuel Production
,”
Bioresour. Technol.
,
102
(
7
), pp.
4890
4896
.
44.
Hu
,
Z.
,
Ma
,
X.
, and
Chen
,
C.
,
2012
, “
A Study on Experimental Characteristic of Microwave-Assisted Pyrolysis of Microalgae
,”
Bioresour. Technol.
,
107
, pp.
487
493
.
45.
Liu
,
H.
,
Ma
,
X.
,
Li
,
L.
,
Hu
,
Z.
,
Guo
,
P.
, and
Jiang
,
Y.
,
2014
, “
The Catalytic Pyrolysis of Food Waste by Microwave Heating
,”
Bioresour. Technol.
,
166
, pp.
45
50
.
46.
Tian
,
Y.
,
Zuo
,
W.
,
Ren
,
Z.
, and
Chen
,
D.
,
2011
, “
Estimation of a Novel Method to Produce Bio-Oil From Sewage Sludge by Microwave Pyrolysis With the Consideration of Efficiency and Safety
,”
Bioresour. Technol.
,
102
(
2
), pp.
2053
2061
.
47.
Huang
,
Y. F.
,
Chiueh
,
P. T.
,
Kuan
,
W. H.
, and
Lo
,
S. L.
,
2013
, “
Microwave Pyrolysis of Rice Straw: Products, Mechanism, and Kinetics
,”
Bioresour. Technol.
,
142
, pp.
620
624
.
48.
Dai
,
Q.
,
Jiang
,
X.
,
Jiang
,
Y.
,
Jin
,
Y.
,
Wang
,
F.
,
Chi
,
Y.
,
Yan
,
J.
, and
Xu
,
A.
,
2014
, “
Temperature Influence and Distribution in Three Phases of PAHs in Wet Sewage Sludge Pyrolysis Using Conventional and Microwave Heating
,”
Energy Fuel
,
28
(
5
), pp.
3317
3325
.
49.
El harfi
,
K.
,
Mokhlisse
,
A.
,
Chanâa
,
M. B.
, and
Outzourhit
,
A.
,
2000
, “
Pyrolysis of the Moroccan (Tarfaya) Oil Shales Under Microwave Irradiation
,”
Fuel
,
79
(
7
), pp.
733
742
.
50.
Salema
,
A. A.
, and
Ani
,
F. N.
,
2012
, “
Microwave-Assisted Pyrolysis of Oil Palm Shell Biomass Using an Overhead Stirrer
,”
J. Anal. Appl. Pyrolysis
,
96
, pp.
162
172
.
51.
Bu
,
Q.
,
Lei
,
H.
,
Ren
,
S.
,
Wang
,
L.
,
Zhang
,
Q.
,
Tang
,
J.
, and
Ruan
,
R.
,
2012
, “
Production of Phenols and Biofuels by Catalytic Microwave Pyrolysis of Lignocellulosic Biomass
,”
Bioresour. Technol.
,
108
, pp.
274
279
.
52.
Salema
,
A. A.
, and
Ani
,
F. N.
,
2012
, “
Pyrolysis of Oil Palm Empty Fruit Bunch Biomass Pellets Using Multimode Microwave Irradiation
,”
Bioresour. Technol.
,
125
, pp.
102
107
.
53.
Mamaeva
,
A.
,
Tahmasebi
,
A.
,
Tian
,
L.
, and
Yu
,
J.
,
2016
, “
Microwave-Assisted Catalytic Pyrolysis of Lignocellulosic Biomass for Production of Phenolic-Rich Bio-Oil
,”
Bioresour. Technol.
,
211
, pp.
382
389
.
54.
Zhang
,
B.
,
Yang
,
C.
,
Moen
,
J.
,
Le
,
Z.
,
Hennessy
,
K.
,
Wan
,
Y.
,
Liu
,
Y.
,
Lei
,
H.
,
Chen
,
P.
, and
Ruan
,
R.
,
2010
, “
Catalytic Conversion of Microwave-Assisted Pyrolysis Vapors
,”
Energy Source Part A
,
32
(
18
), pp.
1756
1762
.
55.
Menéndez
,
J. A.
,
Domínguez
,
A.
,
Fernández
,
Y.
, and
Pis
,
J. J.
,
2007
, “
Evidence of Self-Gasification During the Microwave-Induced Pyrolysis of Coffee Hulls
,”
Energy Fuel
,
21
(
1
), pp.
373
378
.
56.
Xie
,
Q.
,
Peng
,
P.
,
Liu
,
S.
,
Min
,
M.
,
Cheng
,
Y.
,
Wan
,
Y.
,
Li
,
Y.
,
Lin
,
X.
,
Liu
,
Y.
,
Chen
,
P.
, and
Ruan
,
R.
,
2014
, “
Fast Microwave-Assisted Catalytic Pyrolysis of Sewage Sludge for Bio-Oil Production
,”
Bioresour. Technol.
,
172
, pp.
162
168
.
57.
Yang
,
A. L. C.
, and
Ani
,
F. N.
,
2016
, “
Controlled Microwave-Induced Pyrolysis of Waste Rubber Tires
,”
Int. J. Technol.
,
7
(
2
), pp.
314
322
.
58.
Zhao
,
X.
,
Wang
,
M.
,
Liu
,
H.
,
Li
,
L.
,
Ma
,
C.
, and
Song
,
Z.
,
2012
, “
A Microwave Reactor for Characterization of Pyrolyzed Biomass
,”
Bioresour. Technol.
,
104
, pp.
673
678
.
59.
Wang
,
L.
,
Lei
,
H.
,
Ren
,
S.
,
Bu
,
Q.
,
Liang
,
J.
,
Wei
,
Y.
,
Liu
,
Y.
,
Lee
,
G. S.
,
Chen
,
S.
,
Tang
,
J.
,
Zhang
,
Q.
, and
Ruan
,
R.
,
2012
, “
Aromatics and Phenols From Catalytic Pyrolysis of Douglas Fir Pellets in Microwave With ZSM-5 as a Catalyst
,”
J. Anal. Appl. Pyrolysis
,
98
, pp.
194
200
.
60.
Wang
,
Y.
,
Dai
,
L.
,
Wang
,
R.
,
Fan
,
L.
,
Liu
,
Y.
,
Xie
,
Q.
, and
Ruan
,
R.
,
2016
, “
Hydrocarbon Fuel Production From Soapstone Through Fast Microwave-Assisted Pyrolysis Using Microwave Absorbent
,”
J. Anal. Appl. Pyrolysis
,
119
, pp.
251
258
.
61.
Zhang
,
B.
,
Zhong
,
Z.
,
Xie
,
Q.
,
Liu
,
S.
, and
Ruan
,
R.
,
2016
, “
Two-Step Fast Microwave-Assisted Pyrolysis of Biomass for Bio-Oil Production Using Microwave Absorbent and HZSM-5 Catalyst
,”
J. Environ. Sci.
,
45
, pp.
240
247
.
62.
Aziz
,
S. M. A.
,
Wahi
,
R.
,
Ngaini
,
Z.
, and
Hamdan
,
S.
,
2013
, “
Bio-Oils From Microwave Pyrolysis of Agricultural Wastes
,”
Fuel Process. Technol.
,
106
, pp.
744
750
.
63.
Wang
,
X.
,
Morrison
,
W.
,
Du
,
Z.
,
Wan
,
Y.
,
Lin
,
X.
,
Chen
,
P.
, and
Ruan
,
R.
,
2012
, “
Biomass Temperature Profile Development and Its Implications Under the Microwave-Assisted Pyrolysis Condition
,”
Appl. Energy
,
99
, pp.
386
392
.
You do not currently have access to this content.