Foam fluids are widely used in petroleum industry such as foam-enhanced hydrocarbon recovery, underbalanced drilling, and as proppant carrying fluid in hydraulic fracturing. The most important issue to be considered in foam behavior is foam rheology and specifically, apparent viscosity. Various models have been used in order to predict foam apparent viscosity; most of these equations are originally developed for suspension systems, containing rigid spherical particles, and therefore, they are unable to predict foam apparent viscosity with acceptable accuracy. In addition, the lack of a comprehensive model with usage in all foam qualities is still tangible in the literature. In this research, a new general empirical model with application in all foam qualities is proposed and validated against experimental data available in the literature. Despite the simplicity, results have near-unity correlation of determination (R2), which shows good agreement of the proposed model with experimental data. Additionally, a new definition for foam quality is presented, to be more representative of the foam texture.

References

References
1.
Tabzar
,
A.
,
Arabloo
,
M.
, and
Ghazanfari
,
M. H.
,
2015
, “
Rheology, Stability and Filtration Characteristics of Colloidal Gas Aphron Fluids: Role of Surfactant and Polymer Type
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
895
906
.
2.
Barati
,
R.
, and
Liang
,
J. T.
,
2014
, “
A Review of Fracturing Fluid Systems Used for Hydraulic Fracturing of Oil and Gas Wells
,”
J. Appl. Polym. Sci.
,
131
(
16
).
3.
Montgomery
,
C. T.
, and
Smith
,
M. B.
,
2010
, “
Hydraulic Fracturing: History of an Enduring Technology
,”
J. Pet. Technol.
,
62
(
12
), pp.
26
40
.
4.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041203
.
5.
Ishida
,
T.
,
Chen
,
Q.
,
Mizuta
,
Y.
, and
Roegiers
,
J.-C.
,
2004
, “
Influence of Fluid Viscosity on the Hydraulic Fracturing Mechanism
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
190
200
.
6.
Farajzadeh
,
R.
,
Andrianov
,
A.
,
Krastev
,
R.
,
Hirasaki
,
G.
, and
Rossen
,
W. R.
,
2012
, “
Foam–Oil Interaction in Porous Media: Implications for Foam Assisted Enhanced Oil Recovery
,”
Adv. Colloid Interface Sci.
,
183–184
, pp.
1
13
.
7.
Rokhforouz
,
M.
, and
Akhlaghi Amiri
,
H. A.
,
2017
, “
Phase-Field Simulation of Counter-Current Spontaneous Imbibition in a Fractured Heterogeneous Porous Medium
,”
Phys. Fluids
,
29
(
6
), p.
062104
.
8.
Farajzadeh
,
R.
,
Andrianov
,
A.
, and
Zitha
,
P.
,
2010
, “
Investigation of Immiscible and Miscible Foam for Enhancing Oil Recovery
,”
Ind. Eng. Chem. Res.
,
49
(
4
), pp.
1910
1919
.
9.
Hirasaki
,
G. J.
,
Miller
,
C. A.
, and
Puerto
,
M.
,
2008
, “
Recent Advances in Surfactant EOR
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Sept. 21–24,
SPE
Paper No. SPE-115386-MS.
10.
Wu
,
W.
,
Pan
,
J.
, and
Guo
,
M.
,
2010
, “
Mechanisms of Oil Displacement by ASP-Foam and Its Influencing Factors
,”
Pet. Sci.
,
7
(
1
), pp.
100
105
.
11.
Erfani Gahrooei
,
H.
,
Joonaki
,
E.
,
Ghazanfari
,
M. H.
,
Ghanaatian
,
S.
, and
Hassanpouryouzband, A.
,
2017
, “
Introduction of a New Hydrocarbon Based Chemical for Wettability Alteration of Reservoir Rocks to Gas Wetting Condition
,”
79th EAGE Conference and Exhibition
, Paris, France, June 12–15.
12.
Erfani Gahrooei
,
H. R.
, and
Ghazanfari
,
M. H.
,
2017
, “
Application of a Water Based Nanofluid for Wettability Alteration of Sandstone Reservoir Rocks to Preferentially Gas Wetting Condition
,”
J. Mol. Liq.
,
232
, pp.
351
360
.
13.
Yang
,
J.
,
Jovancicevic
,
V.
, and
Ramachandran
,
S.
,
2007
, “
Foam for Gas Well Deliquification
,”
Colloids Surf., A
,
309
(
1
), pp.
177
181
.
14.
Blauch
,
M. E.
,
Gardner
,
T. R.
,
King
,
K. L.
, and
Venditto
,
J. J.
,
1994
, “Gas Well Treatment Compositions and Methods,” Halliburton Company, Houston, TX, U.S. Patent No.
5,310,002
.
15.
Erfani Gahrooei
,
H. R.
, and
Ghazanfari
,
M. H.
,
2017
, “
Toward a Hydrocarbon-Based Chemical for Wettability Alteration of Reservoir Rocks to Gas Wetting Condition: Implications to Gas Condensate Reservoirs
,”
J. Mol. Liq.
,
248
(
Suppl. C
), pp.
100
111
.
16.
Hassani
,
A. H.
, and
Ghazanfari
,
M. H.
,
2018
, “
Impact of Hydrophobicity of SiO2 Nanoparticles on Enhancing Properties of Colloidal Gas Aphron Fluids: An Experimental Study
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012901
.
17.
White
,
C. C.
,
Chesters
,
A. P.
,
Ivan
,
C. D.
,
Maikranz
,
S.
, and
Nouris
,
R.
,
2003
, “
Aphron-Based Drilling Fluid: Novel Technology for Drilling Depleted Formations in the North Sea
,”
SPE/IADC Drilling Conference
, Amsterdam, The Netherlands, Feb. 19–21,
SPE
Paper No. SPE-79840-MS.
18.
Kutlu
,
B.
,
Takach
,
N.
,
Ozbayoglu
,
E. M.
,
Miska
,
S. Z.
,
Yu
,
M.
, and
Mata
,
C.
,
2017
, “
Drilling Fluid Density and Hydraulic Drag Reduction With Glass Bubble Additives
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042904
.
19.
Sherif
,
T.
,
Ahmed
,
R.
,
Shah
,
S.
, and
Amani
,
M.
,
2015
, “
Rheological Behavior of Oil-Based Drilling Foams
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
873
882
.
20.
Gu
,
M.
, and
Mohanty
,
K.
,
2015
, “
Rheology of Polymer-Free Foam Fracturing Fluids
,”
J. Pet. Sci. Eng.
,
134
, pp.
87
96
.
21.
Li
,
R. F.
,
Yan
,
W.
,
Liu
,
S.
,
Hirasaki
,
G.
, and
Miller
,
C. A.
,
2010
, “
Foam Mobility Control for Surfactant Enhanced Oil Recovery
,”
SPE J.
,
15
(
04
), pp.
928
942
.
22.
Höhler
,
R.
, and
Cohen-Addad
,
S.
,
2005
, “
Rheology of Liquid Foam
,”
J. Phys.: Condens. Matter
,
17
(
41
), p.
R1041
.
23.
Herzhaft
,
B.
,
1999
, “
Rheology of Aqueous Foams: A Literature Review of Some Experimental Works
,”
Oil Gas Sci. Technol.
,
54
(
5
), pp.
587
596
.
24.
Shi
,
Y.
, and
Yang
,
D.
,
2017
, “
Quantification of a Single Gas Bubble Growth in Solvent (s)–CO2–Heavy Oil Systems With Consideration of Multicomponent Diffusion Under Nonequilibrium Conditions
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022908
.
25.
Einstein
,
A.
,
1906
, “
Effect of Suspended Rigid Spheres on Viscosity
,”
Ann. Phys.
,
19
, pp.
289
306
.
26.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. A
,
102
(
715
), pp.
161
179
.
27.
Taylor
,
G. I.
,
1932
, “
The Viscosity of a Fluid Containing Small Drops of Another Fluid
,”
Proc. R. Soc. A
,
138
(
834
), pp.
41
48
.
28.
Batchelor
,
G.
,
1977
, “
The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles
,”
J. Fluid Mech.
,
83
(
1
), pp.
97
117
.
29.
Roscoe
,
R.
,
1952
, “
The Viscosity of Suspensions of Rigid Spheres
,”
Br. J. Appl. Phys.
,
3
(
8
), p.
267
.
30.
Brinkman
,
H.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), p. 571.
31.
Ford
,
T.
,
1960
, “
Viscosity-Concentration and Fluidity-Concentration Relationships for Suspensions of Spherical Particles in Newtonian Liquids
,”
J. Phys. Chem.
,
64
(
9
), pp.
1168
1174
.
32.
Arrhenius
,
S.
,
1887
, “
Über Die Innere Reibung Verdünnter Wässeriger Lösungen
,”
Z. Für Physikalische Chem.
,
1
(
1
), pp.
285
298
.
33.
Mooney
,
M.
,
1951
, “
The Viscosity of a Concentrated Suspension of Spherical Particles
,”
J. Colloid Sci.
,
6
(
2
), pp.
162
170
.
34.
Krieger
,
I. M.
,
1972
, “
Rheology of Monodisperse Latices
,”
Adv. Colloid Interface Sci.
,
3
(
2
), pp.
111
136
.
35.
Robinson
,
J. V.
,
1949
, “
The Viscosity of Suspensions of Spheres
,”
J. Phys. Chem.
,
53
(
7
), pp.
1042
1056
.
36.
Eilers
,
H.
,
1941
, “
The Viscosity of the Emulsion of Highly Viscous Substances as Function of Concentration
,”
Kolloid-Z.
,
97
(
3
), pp.
313
321
.
37.
Maron
,
S. H.
, and
Pierce
,
P. E.
,
1956
, “
Application of Ree-Eyring Generalized Flow Theory to Suspensions of Spherical Particles
,”
J. Colloid Sci.
,
11
(
1
), pp.
80
95
.
38.
Pabst
,
W.
,
2004
, “
Fundamental Considerations on Suspension Rheology
,”
Ceram.-Silikáty
,
48
(
1
), pp.
6
13
.
39.
Kitano
,
T.
,
Kataoka
,
T.
, and
Shirota
,
T.
,
1981
, “
An Empirical Equation of the Relative Viscosity of Polymer Melts Filled With Various Inorganic Fillers
,”
Rheol. Acta
,
20
(
2
), pp.
207
209
.
40.
van den Brule
,
B.
, and
Jongschaap
,
R.
,
1991
, “
Modeling of Concentrated Suspensions
,”
J. Stat. Phys.
,
62
(
5
), pp.
1225
1237
.
41.
Frankel
,
N.
, and
Acrivos
,
A.
,
1967
, “
On the Viscosity of a Concentrated Suspension of Solid Spheres
,”
Chem. Eng. Sci.
,
22
(
6
), pp.
847
853
.
42.
Princen
,
H.
, and
Kiss
,
A.
,
1989
, “
Rheology of Foams and Highly Concentrated Emulsions—IV: An Experimental-Study of the Shear Viscosity and Yield Stress of Concentrated Emulsions
,”
J. Colloid Interface Sci.
,
128
(
1
), pp.
176
187
.
43.
Brouwers
,
H.
,
2010
, “
Viscosity of a Concentrated Suspension of Rigid Monosized Particles
,”
Phys. Rev. E
,
81
(
5
), p.
051402
.
44.
Gu
,
M.
,
2013
,
Shale Fracturing Enhancement by Using Polymer-Free Foams and Ultra-Light Weight Proppants
,
The University of Texas
,
Austin, TX
.
45.
Sanghani
,
V.
, and
Ikoku
,
C.
,
1983
, “
Rheology of Foam and Its Implications in Drilling and Cleanout Operations
,”
ASME J. Energy Resour. Technol.
,
105
(
3
), pp.
362
371
.
You do not currently have access to this content.