A novel slab source function has been formulated and successfully applied to examine effects of non-Darcy flow and penetrating ratio on performance of a horizontal well with multiple fractures in a tight formation. The Barree–Conway model is incorporated in the mathematical model to analyze non-Darcy flow behavior in the hydraulic fractures, while the pressure response under non-Darcy flow is determined by two dimensionless numbers (i.e., relative minimum permeability (kmr) and non-Darcy number (FND)). A semi-analytical method is then applied to solve the newly formulated mathematical model by discretizing the fracture into small segments. The newly developed function has been validated with numerical solution obtained from a reservoir simulator. Non-Darcy effect becomes more evident at a smaller relative minimum permeability (kmr < 0.05) and a larger non-Darcy number (FND > 10). The non-Darcy number is found to be more sensitive than the relative minimum permeability, resulting in a larger pressure drop even at a larger kmr. In addition, the non-Darcy flow is found to impose a significant impact on the early-stage bilinear/linear flow regime, resulting in an additional pressure drop that is similar to lowering the fracture conductivity. The pressure response can be classified into two categories by a penetrating ratio of 0.5. When the penetrating ratio is decreased, the early bilinear/linear flow regime occurs, followed by an early radial flow regime.

References

References
1.
[1]
Manrique
,
M.
,
Thomas
,
C.
,
Ravikiran
,
R.
,
Izadi
,
M.
,
Lantz
,
M.
,
Romero
,
J.
, and
Alvarado
,
V.
,
2010
, “
EOR: Current Status and Opportunities
,” SPE Improved Oil Recovery Symposium, Tulsa, OK, Apr. 24–28,
SPE
Paper No. SPE-130113-MS.
2.
Holditch
,
S. A.
, and
Morse
,
R. A.
,
1976
, “
The Effects of Non-Darcy Flow on the Behavior if Hydraulically Fractured Gas Wells
,”
J. Pet. Technol.
,
28
(
10
), pp.
1169
1179
.
3.
Guppy
,
K. H.
,
Cinco-Ley
,
H.
,
Ramey
,
H. J.
, Jr.
, and
Samaniego-V
,
F.
,
1982a
, “
Non-Darcy Flow in Wells With Finite-Conductivity Vertical Fractures
,”
SPE J.
,
22
(
5
), pp.
681
698
.
4.
Guppy
,
K. H.
,
Cinco-Ley
,
H.
, and
Ramey
,
H. J.
, Jr.
,
1982b
, “
Pressure Buildup Analysis of Fractured Wells Producing at High Flow Rates
,”
J. Pet. Technol.
,
34
(
11
), pp.
2655
2666
.
5.
Vincent
,
M. C.
,
Pearson
,
C. M.
, and
Kullman
,
J.
,
1999
, “
Non-Darcy and Multiphase Flow in Propped Fractures: Case Studies Illustrate the Dramatic Effect on Well Productivity
,” SPE Western Regional Meeting, Anchorage, AL, May 26–27,
SPE
Paper No. SPE-54630-MS.
6.
[6]
Umnuayponwiwat
,
S.
,
Ozkan
,
E.
,
Pearson
,
C. M.
, and
Vincent, M.
,
2000
, “
Effect of Non-Darcy Flow on the Interpretation of Transient Pressure Response of Hydraulically Fractured Wells
,”
SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 1–4,
SPE
Paper No. SPE-63176-MS.
7.
Gill
,
J. A.
,
Ozkan
,
E.
, and
Raghavan
,
R.
,
2003
, “
Fractured-Well-Test Design and Analysis in the Presence of Non-Darcy Flow
,”
SPE Reservoir Eval. Eng.
,
6
(
3
), pp.
185
196
.
8.
Forchheimer
,
P.
,
1901
, “
Wasserbewegung Durch Boden
,”
Z. Ver. Deutsch. Ing.
,
45
, pp.
1782
1788
.
9.
Andrade
,
J. S.
, Jr.
,
Almeida
,
M. P.
,
Medes Filho
,
J.
,
Havlin
,
S.
,
Suki
,
B.
, and
Stanley
,
H. E.
,
1997
, “
Fluid Flow Through Porous Media: The Role of Stagnant Zones
,”
Phys. Rev. Lett.
,
79
(
20
), pp.
3901
3904
.
10.
Stanley
,
H. E.
, and
Andrade
,
J. S.
, Jr.
,
2001
, “
Physics of the Cigarette Filter: Fluid Flow Through Structures With Randomly-Placed Obstacles
,”
Phys. A.
,
295
(
1–2
), pp.
17
30
.
11.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
Moderate Reynolds Number Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
, pp.
243
278
.
12.
Barree
,
R. D.
, and
Conway
,
M. W.
,
2004
, “
Beyond Beta Factors: A Complete Model for Darcy, Forchheimer and Trans-Forchheimer Flow in Porous Media
,” SPE Annual Technical Conference and Exhibition, Houston, TX, Sept. 26–29,
SPE
Paper No. SPE-89325-MS.
13.
Lai
,
B.
,
Miskimins
,
J. L.
, and
Wu
,
Y. S.
,
2012
, “
Non-Darcy Porous Media Flow According to the Barree and Conway Model: Laboratory and Numerical Modeling Studies
,”
SPE J.
,
17
(
1
), pp.
70
79
.
14.
Liu
,
H.
,
2014
, “
Non-Darcian Flow in Low-Permeability Media: Key Issues Related to Geological Disposal of High-Level Nuclear Waste in Shale Formations
,”
Hydrogeol. J.
,
22
(
7
), pp.
1525
1534
.
15.
Liu
,
H.
,
Lai
,
B.
, and
Chen
,
J.
,
2016
, “
Unconventional Spontaneous Imbibition into Shale Matrix: Theory and a Methodology to Determine Relevant Parameters
,”
Trans. Porous Med.
,
111
(
1
), pp.
41
57
.
16.
Mohamed
,
I. M.
,
Block
,
G. I.
,
Abou-Sayed
,
O. A.
,
Elkatatny
,
S. M.
, and
Abou-Sayed
,
A. S.
,
2016
, “
Flow Rate-Dependant Skin in Water Disposal Injection Well
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052906
.
17.
Belhaj
,
H. A.
,
Agha
,
K. R.
,
Butt
,
S. D.
, and
Islam
,
M. R.
,
2003
, “
Simulation of Non-Darcy Flow in Porous Media Including Viscous, Inertial and Frictional Effects
,” SPE International Improved Oil Recovery Conference in Asia Pacific, Kuala Lumpur, Malaysia, Oct. 20–21,
SPE
Paper No. SPE-84879-MS.
18.
Zeng
,
F.
, and
Zhao
,
G.
,
2010
, “
The Optimal Hydraulic Fracture Geometry Under Non-Darcy Flow Effects
,”
J. Pet. Sci. Eng.
,
72
(
1–2
), pp.
143
157
.
19.
Wang
,
W. D.
,
Shahvali
,
M.
, and
Su
,
Y. L.
,
2016
, “
Analytical Solutions for a Quad-Linear Flow Model Derived for Multistage Fractured Horizontal Wells in Tight Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012905
.
20.
Rahman
,
M. K.
,
Salim
,
M. M.
, and
Rahman
,
M. M.
,
2012
, “
Analytical Modeling of Non-Darcy Flow-Induced Conductivity Damage in Propped Hydraulic Fractures
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
043101
.
21.
Wu
,
Y. S.
,
Li
,
J. F.
,
Ding
,
D.
,
Wang
,
C.
, and
Di
,
Y.
,
2014
, “
A Generalized Framework Model for Simulation of Gas Production in Unconventional Gas Reservoir
,”
SPE J.
,
19
(
5
), pp.
845
857
.
22.
Lin
,
J.
, and
Zhu
,
D.
,
2012
, “
Predicting Well Performance in Complex Fracture Systems by Slab Source Method
,” SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, Feb. 6–8,
SPE
Paper No. SPE-151960-MS.
23.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
Y. J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
24.
Raghavan
,
R.
,
Uraiet
,
A.
, and
Thomas
,
G.
,
1978
, “
Vertical Fracture Height: Effect on Transient Flow Behavior
,”
SPE J.
,
18
(
4
), pp.
265
277
.
25.
Rodriguez
,
F.
,
Horne
,
R.
, and
Cinco-Ley
,
H.
,
1984
, “
Partially Penetrating Fractures: Pressure Transient Analysis of an Infinite Conductivity Fracture
,” SPE Annual Technical Conference and Exhibition, Houston, TX, Sept. 16–19,
SPE
Paper No. SPE-13057-MS.
26.
Alpheus
,
O.
, and
Tiab
,
D.
,
2008
, “
Pressure Transient Analysis in Partially Penetrating Infinite Conductivity Hydraulic Fractures in Naturally Fractured Reservoirs
,”
SPE Annual Technical Conference and Exhibition, Denver, CO, Sept. 21–24,
SPE
Paper No. SPE-116733-MS.
27.
Lu
,
J.
,
Shawket
,
G.
, and
Zhu
,
T.
,
2011
, “
Non-Darcy Binomial Deliverability Equations for Partially Penetrating Vertical Gas Wells and Horizontal Gas Wells
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
043101
.
28.
Al Rbeawi
,
S.
, and
Tiab
,
D.
,
2012
, “
Effect of Penetrating Ratio on Pressure Behavior of Horizontal Wells With Multi-Inclined Hydraulic Fractures
,”
SPE Western Regional Meeting, Bakersfield, CA, Mar. 21–23,
SPE
Paper No. SPE-153788-MS.
29.
Chen
,
H. Y.
,
Poston
,
S. W.
, and
Raghavan
,
R.
,
1991
, “
An Application of the Product Solution Principle for Instantaneous Source and Green’s Functions
,”
SPE Form. Eval.
,
6
(
2
), pp.
161
167
.
30.
Yang
,
D.
,
Zhang
,
F.
,
Styles
,
J. A.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of a Horizontal Well With Multiple Fractures by Use of a Slab-Source Function
,”
SPE J.
,
20
(
3
), pp.
652
662
.
31.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems—Part 1: Analytical Considerations
,”
SPE Form. Eval.
,
6
(
3
), pp.
359
368
.
32.
Ozkan
,
E.
, and
Raghavan
,
R.
,
1991
, “
New Solutions for Well-Test-Analysis Problems—Part 2: Computational Considerations
,”
SPE Form. Eval.
,
6
(
3
), pp.
369
378
.
33.
Van Kruysdijk
,
C. P. J. W.
,
1988
, “
Semianalytical Modeling of Pressure Transients in Fractured Reservoirs
,”
SPE Annual Technical Conference and Exhibition, Houston, TX, Oct. 2–5,
SPE
Paper No. SPE-18169-MS.
34.
Zhang
,
F.
, and
Yang
,
D.
,
2014
, “
Determination of Minimum Permeability Plateau and Characteristic Length in Porous Media With Non-Darcy Flow Behaviour
,”
J. Pet. Sci. Eng.
,
119
(
7
), pp.
8
16
.
35.
Zhang
,
F.
, and
Yang
,
D.
,
2014
, “
Determination of Fracture Conductivity in Tight Formations With Non-Darcy Flow Behaviour
,”
SPE J.
,
19
(
1
), pp.
34
44
.
36.
Zhang
,
F.
, and
Yang
,
D.
,
2013
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures
,” SPE Unconventional Resources Conference-Canada, Calgary, AB, Canada, Nov. 5–7,
SPE
Paper No. SPE-167218-MS.
37.
Stehfest
,
H.
,
1970
, “
Algorithm 368: Numerical Inversion of Laplace Transforms [D5]
,”
Commun. ACM.
,
13
(
1
), pp.
47
49
.
38.
Al-Otaibi
,
A. M.
, and
Wu
,
Y. S.
,
2011
, “
An Alternative Approach to Modeling Non-Darcy Flow for Pressure Transit Analysis in Porous and Fractured Reservoirs
,”
SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, May 15–18,
SPE
Paper No. SPE-149123-MS.
39.
Geertsma
,
J.
,
1974
, “
Estimating the Coefficient of Inertial Resistance in Fluid Flow Through Porous Media
,”
SPE J.
,
14
(
5
), pp.
445
450
.
40.
Fand
,
R. M.
,
Kim
,
B. Y. K.
,
Lam
,
A. C. C.
, and
Phan
,
R. T.
,
1987
, “
Resistance to the Flow of Fluids Through Simple and Complex Porous Media Whose Matrices Are Composed of Randomly Packed Spheres
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
268
274
.
41.
Montillet
,
A.
,
2004
, “
Flow Through a Finite Packed Bed of Spheres: A Note on the Limit of Applicability of the Forchheimer-Type Equation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
139
143
.
42.
Cinco-Ley
,
H.
,
Samaniego-V
,
F.
, and
Domínguez
,
A. N.
,
1978
, “
Transient Pressure Behavior for a Well With a Finite-Conductivity Vertical Fracture
,”
SPE J.
,
18
(
4
), pp.
253
264
.
You do not currently have access to this content.