Isenthalpic flash is a type of flash calculation conducted at a given pressure and enthalpy for a feed mixture. Multiphase isenthalpic flash calculations are often required in compositional simulations of steam-based enhanced oil recovery methods. Based on a free-water assumption that the aqueous phase is pure water, a robust and efficient algorithm is developed to perform isenthalpic three-phase flashes. Assuming that the feed is stable, we first determine the temperature by solving the energy conservation equation. Then, the stability test on the feed mixture is conducted at the calculated temperature and the given pressure. If the mixture is found unstable, two-phase and three-phase vapor–liquid–aqueous isenthalpic flash can be simultaneously initiated without resorting to stability tests. The outer loop is used to update the temperature by solving the energy conservation equation. The inner loop determines the phase fractions and compositions through a three-phase free-water isothermal flash. A two-phase isothermal flash will be initiated if an open feasible region in the phase fractions appears in any iteration during the three-phase flash or any of the ultimately calculated phase fractions from the three-phase flash do not belong to [0,1]. A number of example calculations for water/hydrocarbon mixtures are carried out, demonstrating that the proposed algorithm is accurate, efficient, and robust.

References

References
1.
Naderi
,
K.
, and
Babadagli
,
T.
,
2015
, “
Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperatures: A Review and Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012904
.
2.
Prats
,
M.
,
1982
,
Thermal Recovery, Society of Petroleum Engineers of AIME
,
H.L. Doherty Memorial Fund of AIME
,
New York
.
3.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022901
.
4.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
5.
Panwar
,
A.
,
Trivedi
,
J. J.
, and
Nejadi
,
S.
,
2015
, “
Importance of Distributed Temperature Sensor Data for Steam Assisted Gravity Drainage Reservoir Characterization and History Matching Within Ensemble Kalman Filter Framework
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042902
.
6.
Willman
,
B. T.
,
Valleroy
,
V. V.
,
Runberg
,
G. W.
,
Cornelius
,
A. J.
, and
Powers
,
L. W.
,
1961
, “
Laboratory Studies of Oil Recovery by Steam Injection
,”
J. Pet. Technol.
,
13
(
7
), pp.
681
690
.
7.
Utvik
,
O. H.
,
Rinde
,
T.
, and
Valle
,
A.
,
2001
, “
An Experimental Comparison Between a Recombined Hydrocarbon-Water Fluid and a Model Fluid System in Three-Phase Pipe Flow
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
253
259
.
8.
Zaghloul
,
J.
,
Adewumi
,
M.
, and
Ityokumbul
,
M. T.
,
2008
, “
Hydrodynamic Modeling of Three-Phase Flow in Production and Gathering Pipelines
,”
ASME J. Energy Resour. Technol.
,
130
(
4
), p.
043004
.
9.
Brantferger
,
K. M.
,
Pope
,
G. A.
, and
Sepehrnoori
,
K.
,
1991
, “
Development of a Thermodynamically Consistent, Fully Implicit, Equation-of-State, Compositional Steamflood Simulator
,” SPE Symposium on Reservoir Simulation, Anaheim, CA, Feb. 17–20,
SPE
Paper No. SPE-21253-MS.
10.
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2015
, “
Prediction of Water Solubility in Petroleum Fractions and Heavy Crudes Using Cubic-Plus-Association Equation of State (CPA-EoS)
,”
Fuel
,
159
, pp.
894
899
.
11.
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2017
, “
Water Content of Light n-Alkanes: New Measurements and Cub-Plus-Association Equation of State Modeling
,”
AIChE J.
,
63
(
4
), pp.
1384
1389
.
12.
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2017
, “
Experimental and Modeling Studies of MacKay River Bitumen and Water
,”
J. Pet. Sci. Eng.
,
151
, pp.
305
310
.
13.
Zirrahi
,
M.
,
Hassanzadeh
,
H.
, and
Abedi
,
J.
,
2017
, “
Experimental and Modeling Studies of Water, Light n-Alkanes and MacKay River Bitumen Ternary Systems
,”
Fuel
,
196
, pp.
1
12
.
14.
Grabowski
,
J. W.
,
Vinsome
,
P. K.
,
Lin
,
R. C.
,
Behie
,
G. A.
, and
Rubin
,
B.
,
1979
, “
A Fully Implicit General Purpose Finite Difference Thermal Model for In Situ Combustion and Steam
,” SPE Annual Technical Conference and Exhibition, Las Vegas, NV, Sept. 23–26,
SPE
Paper No. SPE-8396-MS.
15.
Rubin
,
B.
, and
Buchanan
,
W. L.
,
1985
, “
A General Purpose Thermal Model
,”
SPE J.
,
25
(
2
), pp.
202
214
.
16.
Ishimoto
,
K.
,
Pope
,
G. A.
, and
Sepchrnoori
,
K.
,
1987
, “
An Equation-of-State Steam Simulator
,”
In Situ
,
11
(
1
), pp.
1
37
.
17.
Chien
,
M. C. H.
,
Yardumian
,
H. E.
,
Chung
,
E. Y.
, and
Todd
,
W. W.
,
1989
, “
The Formulation of a Thermal Simulation Model in a Vectorized, General Purpose Reservoir Simulator
,” SPE Symposium on Reservoir Simulation, Houston, TX, Feb. 6–8,
SPE
Paper No. SPE-18418-MS.
18.
Michelsen
,
M. L.
,
1987
, “
Multiphase Isenthalpic and Isentropic Flash Algorithms
,”
Fluid Phase Equilib.
,
33
(
1–2
), pp.
13
27
.
19.
Li
,
Z.
, and
Firoozabadi
,
A.
,
2012
, “
General Strategy for Stability Testing and Phase-Split Calculation in Two and Three Phases
,”
SPE J.
,
17
(
4
), pp.
1096
1107
.
20.
Agarwal
,
R. K.
,
Li
,
Y. K.
,
Nghiem
,
L. X.
, and
Coombe
,
D. A.
,
1991
, “
Multiphase Multicomponent Isenthalpic Flash Calculations
,”
J. Can. Pet. Technol.
,
30
(
3
), pp.
69
75
.
21.
Zhu
,
D.
, and
Okuno
,
R.
,
2014
, “
A Robust Algorithm for Isenthalpic Flash of Narrow-Boiling Fluids
,”
Fluid Phase Equilib.
,
379
, pp.
26
51
.
22.
Rachford
,
H. H.
, Jr.
, and
Rice
,
J. D.
,
1952
, “
Procedure for Use of Electronic Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium
,”
J. Pet. Sci. Eng.
,
4
(10), pp. 19–23.
23.
Michelsen
,
M. L.
,
1982
, “
The Isothermal Flash Problem—Part II: Phase-Split Calculation
,”
Fluid Phase Equilib.
,
9
(
1
), pp.
21
40
.
24.
Nghiem
,
L. X.
,
1983
, “
A New Approach to Quasi-Newton Methods With Application to Compositional Modeling
,” SPE Reservoir Simulation Symposium, San Francisco, CA, Nov. 15–18,
SPE
Paper No. SPE-12242-MS.
25.
Nghiem
,
L. X.
, and
Li
,
Y. K.
,
1984
, “
Computation of Multiphase Equilibrium Phenomena With an Equation of State
,”
Fluid Phase Equilib.
,
17
(
1
), pp.
77
95
.
26.
Gupta
,
A. K.
,
Bishnoi
,
P. R.
, and
Kalogerakis
,
N.
,
1990
, “
Simultaneous Multiphase Isothermal/Isenthalpic Flash and Stability Calculations for Reacting/Non-Reacting Systems
,”
Gas Sep. Purif.
,
4
(
4
), pp.
215
222
.
27.
Zhu
,
D.
, and
Okuno
,
R.
,
2016
, “
Multiphase Isenthalpic Flash Integrated With Stability Analysis
,”
Fluid Phase Equilib.
,
423
, pp.
203
219
.
28.
Zhu
,
D.
, and
Okuno
,
R.
,
2015
, “
Robust Isenthalpic Flash for Multiphase Water/Hydrocarbon Mixtures
,”
SPE J.
,
20
(
6
), pp.
1350
1365
.
29.
Heidari
,
M.
,
Nghiem
,
L. X.
, and
Maini
,
B. B.
,
2014
, “
Improved Isenthalpic Multiphase Flash Calculations for Thermal Compositional Simulators
,” SPE Heavy Oil Conference, Calgary, AB, Canada, June 10–12,
SPE
Paper No. SPE-170029-MS.
30.
Lapene
,
A.
,
Nichita
,
D. V.
,
Debenest
,
G.
, and
Quintard
,
M.
,
2010
, “
Three-Phase Free-Water Flash Calculations Using a New Modified Rachford–Rice Equation
,”
Fluid Phase Equilib.
,
297
(
1
), pp.
121
128
.
31.
Li
,
R.
, and
Li
,
H.
,
2017
, “
New Two-Phase and Three-Phase Rachford-Rice Algorithms Based on Free-Water Assumption
,”
Can. J. Chem. Eng.
, accepted.
32.
Okuno
,
R.
,
Johns
,
R.
, and
Sepehrnoori
,
K.
,
2010
, “
A New Algorithm for Rachford-Rice for Multiphase Compositional Simulation
,”
SPE J.
,
15
(
2
), pp.
313
325
.
33.
Tang
,
Y.
, and
Saha
,
S.
,
2003
, “
An Efficient Method to Calculate Three-Phase Free-Water Flash for Water-Hydrocarbon Systems
,”
Ind. Eng. Chem. Res.
,
42
(
1
), pp.
189
197
.
34.
Peng
,
D. Y.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
35.
Whitson
,
C. H.
, and
Michelsen
,
M. L.
,
1989
, “
The Negative Flash
,”
Fluid Phase Equilib.
,
53
, pp.
51
71
.
36.
Wilson
,
G. M.
,
1969
,
A Modified Redlich-Kwong Equation of State, Application to General Physical Data Calculations
,”
65th National AIChE Meeting
, Cleveland, OH, May 4–7.
37.
Zhu
,
D.
, and
Okuno
,
R.
,
2015
, “
Analysis of Narrow-Boiling Behavior for Thermal Compositional Simulation
,” SPE Reservoir Simulation Symposium, Houston, TX, Feb. 23–25,
SPE
Paper No. SPE-173234-MS.
You do not currently have access to this content.