Catalytic effects of metal oxides on combustion characteristics of inferior coal, sludge, and their mixture were investigated by thermogravimetric analysis. Combustion and thermal dynamic characteristics including ignition temperatures, apparent activation energy, and frequency factors of inferior coal, sludge, and their mixture were observed. The catalytic effects and mechanism of combustion were discussed. Results showed that thermal gravity analysis (TG) and derivative thermogravimetric analysis (DTG) curves of coal and sludge shifted to lower temperature side, the weight losses increased, and the ignition performance was improved with the addition of metal oxides CaO, Al2O3, and K2O. The combustion dynamics analysis showed that the apparent activation energy of cocombustion of coal blending sludge decreased by 11–20% and the frequency factors increased by 20–30%. The minimum apparent activation energy and the maximum frequency factors were obtained in the presence of K2O, indicating that the catalytic effect of K2O was most significant.

References

References
1.
Banerjee
,
S.
,
2011
, “
Glucose From Paper Mill Sludge
,”
Bioresources
,
6
(
4
), pp.
4739
4746
.
2.
Hu
,
S. H.
, and
Hu
,
S. C.
,
2013
, “
Pyrolysis of Paper Sludge and Utilization for Ionic Dye Adsorption
,”
Bioresources
,
8
(
1
), pp.
1028
1042
.
3.
Yan
,
Y. F.
,
Zhang
,
Z. E.
,
Zhang
,
L.
, and
Zhang
,
L.
,
2014
, “
Influence of Coal Properties on the Co-Combustion Characteristics of Low-Grade Coal and City Mud
,”
Global NEST J.
,
16
(
2
), pp.
329
338
.
4.
Jang
,
J. G.
,
Du
,
X. J.
, and
Yang
,
S. S.
,
2010
, “
Analysis of the Combustion of Sewage Sludge-Derived Fuel by a Thermogravimetric Method in China
,”
Waste Manage.
,
30
(
7
), pp.
1407
1413
.
5.
Wen
,
J. M.
,
Chi
,
Y.
,
Liu
,
Y. Y.
,
Jin
,
Y. Q.
,
Yan
,
J. H.
, and
Cen
,
K. F.
,
2004
, “
Study on Kinetics of Municipal Sewage Sludge Combustion
,”
Power Syst. Eng.
,
20
(
5
), pp.
5
7
.
6.
Yan
,
Y. F.
,
Zhang
,
L.
,
Zhang
,
L.
,
Lei
,
Q.
, and
Zhang
,
J.
,
2013
, “
The Influence of Oxygen Concentration on the Combustion Characteristics of Inferior Coal and Sludge Mixture
,”
J. Fuel Chem. Technol.
,
41
(
4
), pp.
430
435
.
7.
Yu
,
L. Y.
, and
Li
,
P. S.
,
2014
, “
Thermogravimetric Analysis of Coal and Sludge Co-Combustion With Microwave Radiation Dehydration
,”
J. Energy Inst.
,
87
(
3
), pp.
220
226
.
8.
Shimizu
,
T.
,
Toyono
,
M.
, and
Ohsawa
,
H.
,
2007
, “
Emissions of NOx and N2O During Co-Combustion of Dried Sewage Sludge With Coal in a Bubbling Fluidized Bed Combustor
,”
Fuel
,
86
(
7–8
), pp.
957
964
.
9.
Folgueras
,
M. B.
, and
Díaz
,
R. M.
,
2010
, “
Influence of FeCl3 and Lime Added to Sludge on Sludge–Coal Pyrolysis
,”
Energy
,
35
(
12
), pp.
5250
5259
.
10.
Liao
,
Y. F.
, and
Ma
,
X. Q.
,
2010
, “
Thermogravimetric Analysis of the Co-Combustion of Coal and Paper Mill Sludge
,”
Appl. Energy
,
87
(
11
), pp.
3526
3532
.
11.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
.
12.
Cheng
,
X.
,
Han
,
K.
,
Huang
,
Z.
, and
Wang
,
Z.
,
2016
, “
Ash Fusibility Based on Modes of Occurrence and High-Temperature Behaviors of Mineral Matter in Coals
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022003
.
13.
Xiao
,
B.
,
Jiang
,
T.
, and
Zhang
,
S.
,
2016
, “
Novel Nanocomposite Fiber-Laden Viscoelastic Fracturing Fluid for Coal Bed Methane Reservoir Stimulation
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022906
.
14.
Rokni
,
E.
,
Hsein
,
C. H.
, and
Levendis
,
Y. A.
,
2017
, “
In-Furnace Sulfur Capture by Cofiring Coal With Alkali-Based Sorbents
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042204
.
15.
Magdziarz
,
A.
, and
Wilk
,
M.
,
2013
, “
Thermogravimetric Study of Biomass, Sewage Sludge and Coal Combustion
,”
Energy Convers. Manage.
,
75
, pp.
425
430
.
16.
Li
,
Y. Y.
,
Jin
,
Y. Y.
, and
Li
,
H.
,
2011
, “
Thermogravimetric Analysis and Co-Combustion Characteristics of Dried Sludge and Coal
,”
China Environ. Sci.
,
31
(
3
), pp.
408
411
.
17.
Taniguchi
,
M.
,
Okazaki
,
H.
,
Kobayashi
,
H.
,
Shigeru
,
A.
,
Hiroshi
,
M.
,
Muto, H.
, and
Tsumura, T.
,
2000
, “
Pyrolysis and Ignition Characteristics of Pulverized Coal Particles
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
32
38
.
18.
Chen
,
L.
,
Song
,
P.
,
Long
,
W.
,
Feng
,
L.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2017
, “
Experimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
044501
.
19.
Shao
,
J. G.
,
Yan
,
R.
,
Chen
,
H. P.
,
Yang
,
H. P.
, and
Lee
,
D. H.
,
2010
, “
Catalytic Effect of Metal Oxides on Pyrolysis of Sewage Sludge
,”
Fuel Process. Technol.
,
91
(
9
), pp.
1113
1118
.
20.
Xiao
,
H. M.
,
Ma
,
X. Q.
, and
Liu
,
K.
,
2010
, “
Co-Combustion Kinetics of Sewage Sludge With Coal and Coal Gangue Under Different Atmospheres
,”
Energy Convers. Manage.
,
51
(
10
), pp.
1976
1980
.
21.
Zhang
,
C. Q.
,
Jiang
,
X. M.
,
Wei
,
L. H.
, and
Wang
,
H.
,
2007
, “
Research on Pyrolysis Characteristics and Kinetics of Super Fine and Conventional Pulverized Coal
,”
Energy Convers. Manage.
,
48
(
3
), pp.
797
802
.
22.
He
,
H. Z.
,
Luo
,
Z. Y.
, and
Cen
,
K. F.
,
2005
, “
Study on Dynamic Reaction Parameters of Anthracite Combustion by Using Different Thermoanalytical Methods
,”
J. Power Eng.
,
25
(
4
), pp.
493
499
.
23.
Xu
,
C. F.
,
Sun
,
X. X.
, and
Guo
,
X.
,
2005
, “
Analysis of Main Factors Affecting Thermogravimetric Curves in Thermogravimetric Test
,”
Therm. Power Gener.
,
34
(6), pp.
34
36
.
24.
Li
,
X. G.
,
Ma
,
B. G.
,
Xu
,
L.
,
Luo
,
Z. T.
, and
Wang
,
K.
,
2007
, “
Catalytic Effect of Metallic Oxides on Combustion Behavior of High Ash Coal
,”
Energy Fuels
,
21
(
5
), pp.
2669
2672
.
25.
Liu
,
J. Y.
,
Sun
,
S. Y.
,
Long
,
L. S.
,
Chen
,
T.
, and
Chen
,
M. T.
,
2009
, “
Catalytic Actions and Reaction Mechanism of Compounds With Metal Elements on the Combustion of Mixed Industrial Sludge
,”
Proc. CSEE
,
29
(
23
), pp.
51
60
.
You do not currently have access to this content.