Numerous studies have shown that the minimization of entropy generation does not always lead to an optimum performance in energy conversion systems. The equivalence between minimum entropy generation and maximum power output or maximum thermal efficiency in an irreversible power cycle occurs subject to certain design constraints. This article introduces specific entropy generation defined as the rate of total entropy generated due to the operation of a power cycle per unit flowrate of fuel. Through a detailed thermodynamic modeling of a gas turbine cycle, it is shown that the specific entropy generation correlates unconditionally with the thermal efficiency of the cycle. A design at maximum thermal efficiency is found to be identical to that at minimum specific entropy generation. The results are presented for five different fuels including methane, hydrogen, propane, methanol, and ethanol. Under identical operating conditions, the thermal efficiency is approximately the same for all five fuels. However, a power cycle that burns a fuel with a higher heating value produces a higher specific entropy generation. An emphasis is placed to distinguish between the specific entropy generation (with the unit of J/K mol fuel) and the entropy generation rate (W/K). A reduction in entropy generation rate does not necessarily lead to an increase in thermal efficiency.

References

References
1.
Haseli
,
Y.
,
2011
, “
Substance Independence of Efficiency of a Class of Heat Engines Undergoing Two Isothermal Processes
,”
J. Thermodyn.
,
2011
, p.
647937
.
2.
Leff
,
H. S.
, and
Jones
,
G. L.
,
1975
, “
Irreversibility, Entropy Production, and Thermal Efficiency
,”
Am. J. Phys.
,
43
(11), pp.
973
980
.
3.
Haseli
,
Y.
,
2013
, “
Performance of Irreversible Heat Engines at Minimum Entropy Generation
,”
Appl. Math. Model.
,
37
(23), pp.
9810
9817
.
4.
Haseli
,
Y.
,
2013
, “
Optimization of Regenerative Brayton Cycle by Maximization of a Newly Defined Second Law Efficiency
,”
Energy Convers. Manage.
,
68
, pp.
133
140
.
5.
Haseli
,
Y.
,
2016
, “
Efficiency of Irreversible Brayton Cycles at Minimum Entropy Generation
,”
Appl. Math. Model.
,
40
(19–20), pp.
8366
8376
.
6.
Feidt
,
M.
,
Costea
,
M.
,
Petrescu
,
S.
, and
Stanciu
,
C.
,
2016
, “
Nonlinear Thermodynamic Analysis and Optimization of a Carnot Engine Cycle
,”
Entropy
,
18
(7), p.
243
.
7.
Cheng
,
X. T.
, and
Liang
,
X. G.
,
2013
, “
Discussion on the Applicability of Entropy Generation Minimization to the Analyses and Optimizations of Thermodynamic Processes
,”
Energy Convers. Manage.
,
73
, pp.
121
127
.
8.
Cheng
,
X. T.
, and
Liang
,
X. G.
,
2012
, “
Heat-Work Conversion Optimization of One-Stream Heat Exchanger Network
,”
Energy
,
47
(1), pp.
421
429
.
9.
Sun
,
C.
,
Cheng
,
X. T.
, and
Liang
,
X. G.
,
2014
, “
Output Power Analyses for the Thermodynamic Cycles of Thermal Power Plants
,”
Chin. Phys. B
,
23
(5), p.
050513
.
10.
Li
,
T.
,
Fu
,
W.
, and
Zhu
,
J.
,
2014
, “
An Integrated Optimization for Organic Rankine Cycle Based on Entransy Theory and Thermodynamics
,”
Energy
,
72
, pp.
561
573
.
11.
Zhou
,
B.
,
Tao Cheng
,
X.
,
Wang
,
W. H.
, and
Liang
,
X. G.
,
2015
, “
Entransy Analyses of Thermal Processes With Variable Thermophysical Properties
,”
Int. J. Heat Mass Transfer
,
90
, pp.
1244
1254
.
12.
Klein
,
S. A.
, and
Reindl
,
D. T.
,
1998
, “
The Relationship of Optimum Heat Exchanger Allocation and Minimum Entropy Generation Rate for Refrigeration Cycles
,”
ASME J. Energy Resour. Technol.
,
120
(2), pp.
172
178
.
13.
Shah
,
R. K.
, and
Skiepko
,
T.
,
2004
, “
Entropy Generation Extrema and Their Relationship With Heat Exchanger Effectiveness—Number of Transfer Unit Behavior for Complex Flow Arrangements
,”
ASME J. Heat Transfer
,
126
(6), pp.
994
1002
.
14.
Qian
,
X.
, and
Li
,
Z.
,
2011
, “
Analysis of Entransy Dissipation in Heat Exchangers
,”
Int. J. Therm. Sci.
,
50
(4), pp.
608
614
.
15.
Cheng
,
X. T.
,
2013
, “
Entropy Resistance Minimization: An Alternative Method for Heat Exchanger Analyses
,”
Energy
,
58
, pp.
672
678
.
16.
Chakraborty
,
S.
, and
Ray
,
S.
,
2011
, “
Performance Optimisation of Laminar Fully Developed Flow Through Square Ducts With Rounded Corners
,”
Int. J. Therm. Sci.
,
50
(12), pp.
2522
2535
.
17.
Fakheri
,
A.
,
2010
, “
Second Law Analysis of Heat Exchangers
,”
ASME J. Heat Transfer
,
132
(11), p.
111802
.
18.
Haseli
,
Y.
,
2016
, “
The Equivalence of Minimum Entropy Production and Maximum Thermal Efficiency in Endoreversible Heat Engines
,”
Heliyon
,
2
(5), p.
e00113
.
19.
Bejan
,
A.
,
1996
, “
Models of Power Plants That Generate Minimum Entropy While Operating at Maximum Power
,”
Am. J. Phys.
,
64
(8), pp.
1054
1059
.
20.
Bejan
,
A.
,
1996
, “
The Equivalence of Maximum Power and Minimum Entropy Generation Rate in the Optimization of Power Plants
,”
ASME J. Energy Resour. Technol.
,
118
(2), pp.
98
101
.
21.
Salamon
,
P.
,
Hoffmann
,
K. H.
,
Schubert
,
S.
,
Berry
,
R. S.
, and
Andresen
,
B.
,
2001
, “
What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production
,”
J. Non-Equilib. Thermodyn.
,
26
(1), pp.
73
83
.
22.
Bejan
,
A.
,
2017
, “
Evolution in Thermodynamics
,”
Appl. Phys. Rev.
,
4
(1), p.
011305
.
23.
Leff
,
H. S.
,
1996
, “
Thermodynamic Entropy: The Spreading and Sharing of Energy
,”
Am. J. Phys.
,
64
(10), pp.
1261
1271
.
24.
Lambert, F. L.
, 2002, “
Entropy is Simple, Qualitatively
,”
J. Chem. Educ.
,
79
(10), pp. 1241–1246.
25.
Lambert
,
F. L.
,
2002
, “
Disorder—A Crack Crutch for Supporting Entropy Discussions
,”
J. Chem. Educ.
,
79
(2), pp.
187
192
.
26.
Borgnakke
,
C.
, and
Sonntag
,
R. E.
,
2013
,
Fundamentals of Thermodynamics
,
8th ed.
,
Wiley
,
Hoboken, NJ
.
27.
Gyftopoulos
,
E. P.
, and
Beretta
,
G. P.
,
1993
, “
Entropy Generation Rate in a Chemically Reacting System
,”
ASME J. Energy Resour. Technol.
,
115
(3), pp.
208
212
.
28.
Linstrom, P. J.
, and
Mallard, W. G.
,
2017
, “
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,” National Institute of Standards and Technology, Gaithersburg MD, accessed Sept. 20, 2017, http://webbook.nist.gov/
29.
Haseli
,
Y.
,
2011
,
Thermodynamic Optimization of Power Plants
,
Eindhoven University of Technology
,
Eindhoven, The Netherlands
.
30.
Wang
,
Y.
,
Ding
,
X.
,
Tang
,
L.
, and
Weng
,
Y.
,
2016
, “
Effect of Evaporation Temperature on the Performance of Organic Rankine Cycle in Near-Critical Condition
,”
ASME J. Energy Resour. Technol.
,
138
(3), p.
032001
.
31.
Ramaprabhu
,
V.
, and
Roy
,
R. P.
,
2004
, “
A Computational Model of Combined Cycle Power Generation Unit
,”
ASME J. Energy Resour. Technol.
,
126
(3), pp.
231
240
.
32.
Yu
,
S. Y.
,
Chen
,
L.
,
Zhao
,
Y.
,
Li
,
H. X.
, and
Zhang
,
X. R.
,
2015
, “
A Brief Review Study of Various Thermodynamic Cycles for High Temperature Power Generation Systems
,”
Energy Convers. Manage.
,
94
, pp.
68
83
.
33.
Hofmann
,
M.
, and
Tsatsaronis
,
G.
,
2016
, “
Exergy-Based Study of Binary Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
138
(6), p.
062003
.
34.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(3), p.
032002
.
You do not currently have access to this content.