In the course of the “Energiewende,” the German electricity market is undergoing major changes. The state-aided priority of renewable generation has led to a significant decline in electricity prices. This reduces the profit margin of cogeneration units and increases the necessity of flexible operation to avoid electricity production when spot prices drop below marginal costs. In this work, a 100 MWel combined-cycle (CC) power plant supplying heat and power to a paper mill is investigated. Currently, the plant is operated heat-controlled and is therefore unable to react to changing electricity spot prices. With the integration of heat storage, the plant is enabled to switch to power-controlled mode. To evaluate the technical impact of the storage, the plant and a thermochemical MgO/Mg(OH)2 storage are modeled using the stationary process simulation tool ebsilon professional. Different operation modes are investigated and results are used to derive a mixed integer linear programming (MILP) model to optimize the operation of the plant/storage system. Using this method, the overall economic impact of the storage on the plant operation is quantified.

References

References
1.
Bundestag
,
2011
, “13. Gesetz zur Änderung des Atomgesetzes,” Bundeshaus, Bonn, Germany.
2.
Bundestag
,
2011
, “Gesetz zur Neuregelung des Rechtsrahmens für die Förderung der Stromerzeugung aus erneuerbaren Energien,” Bundeshaus, Bonn, Germany.
3.
Bundestag
,
2016
, “Gesetz für den Ausbau erneuerbarer Energien,” ErneuerbareEnergien-Gesetz (EEG 2017), Bundeshaus, Bonn, Germany.
4.
Buttler
,
A.
,
Hentschel
,
J.
,
Kahlert
,
S.
, and
Angerer
,
M.
,
2015
, “Statusbericht Flexibiltätsbedarf im Stromsektor.”
5.
EPEX Spot, 2017, “
EPEX Spot
,” EPEX Spot, Paris, France, accessed Dec. 18, 2017, https://www.epexspot.com/en/
6.
Hentschel
,
J.
,
Babić
,
U.
, and
Spliethoff
,
H.
,
2016
, “
A Parametric Approach for the Valuation of Power Plant Flexibility Options
,”
Energy Rep.
, 2, pp.
40
47
.
7.
Deutsche Energie Agentur
,
2014
, “dena-Studie Systemdienstleistungen 2030: Sicherheit und Zuverlässigkeit einer Stromversorgung mit hohem Anteil erneuerbarer Energien,” Deutsche Energie-Agentur GmbH, Berlin.
8.
Gores, S.
,
Harthan, R. O.
,
Hauke, H.
,
Loreck, C.
, and
Matthes, F. C.
,
2013
, “Perspektiven der Kraft-WärmeKopplung im Rahmen der Energiewende,” Öko-Institut e.V., Berlin.
9.
N-ERGIE
,
2016
, “Wärmespeicher der N-ERGIE erfüllt die Erwartungen,” N-ERGIE, Nuremberg, Germany.
10.
Stadwerke Potsdam
,
2016
, “Neuer Wärmespeicher ist ein wichtiger Beitrag für den Klimaschutz,” Stadtwerke Potsdam Gmbh, Potsdam, Germany.
11.
MVV Energie,
2013
, “Neuer Fernwärmespeicher wird ins Netz eingebunden,” MVV Energie AG, Mannheim, Germany.
12.
George
,
A.
,
2005
, “Commitment Techniques for Combined-Cycle Generating Units,” CEA Technologies Inc., Montreal, QC, Canada.
13.
Thorin
,
E.
,
Brand
,
H.
, and
Weber
,
C.
,
2005
, “
Long-Term Optimization of Cogeneration Systems in a Competitive Market Environment
,”
Appl. Energy
,
81
(
2
), pp.
152
169
.
14.
Senjyu
,
T.
,
Miyagi
,
T.
,
Ahmedyousuf
,
S.
,
Urasaki
,
N.
, and
Funabashi
,
T.
,
2007
, “
A Technique for Unit Commitment With Energy Storage System
,”
Int. J. Electr. Power Energy Syst.
,
29
(
1
), pp.
91
98
.
15.
Tveit
,
T.-M.
,
Savola
,
T.
,
Gebremedhin
,
A.
, and
Fogelholm
,
C.-J.
,
2009
, “
Multi-Period MINLP Model for Optimising Operation and Structural Changes to CHP Plants in District Heating Networks With Long-Term Thermal Storage
,”
Energy Convers. Manage.
,
50
(
3
), pp.
639
647
.
16.
Christidis
,
A.
,
Koch
,
C.
,
Pottel
,
L.
, and
Tsatsaronis
,
G.
,
2012
, “
The Contribution of Heat Storage to the Profitable Operation of Combined Heat and Power Plants in Liberalized Electricity Markets
,”
Energy
,
41
(
1
), pp.
75
82
.
17.
Mollenhauer
,
E.
,
Christidis
,
A.
, and
Tsatsaronis
,
G.
,
2016
, “
Evaluation of an Energy- and Exergy-Based Generic Modeling Approach of Combined Heat and Power Plants
,”
Int. J. Energy Environ. Eng.
,
7
(
2
), pp.
167
176
.
18.
Yokoyama
,
R.
, and
Ito
,
K.
,
1996
, “
Operational Strategy of a Cogeneration System Under a Complex Utility Rate Structure
,”
ASME J. Energy Resour. Technol.
,
118
(
4
), pp. 256–262.
19.
Yokoyama
,
R.
, and
Ito
,
K.
,
1999
, “
Optimal Operation of a Gogeneration Plant in Consideration of Equipment Startup/Shutdown Cost
,”
ASME J. Energy Resour. Technol.
,
121
(
4
), pp. 254–261.
20.
Lehmann
,
B.
,
1986
, “Die Pufferspeicherung thermischer Energie mittels der Wärmetönung des Systems Calciumoxid/Calciumhydroxid,” Ph.D. thesis, Kernforschungszentrum Karlsruhe, Karlsruhe, Germany.
21.
Kato
,
Y.
,
Yamashita
,
N.
,
Kobayashi
,
K.
, and
Yoshizawa
,
Y.
,
1996
, “
Kinetic Study of the Hydration of Magnesium Oxide for a Chemical Heat Pump
,”
Appl. Therm. Eng.
,
16
(
11
), pp.
853
862
.
22.
Kato
,
Y.
,
Harada
,
N.
, and
Yoshizawa
,
Y.
,
1999
, “
Kinetic Feasibility of a Chemical Heat Pump for Heat Utilization of High-Temperature Processes
,”
Appl. Therm. Eng.
,
19
(
3
), pp.
239
254
.
23.
Criado
,
Y. A.
,
Alonso
,
M.
, and
Abanades
,
J. C.
,
2014
, “
Kinetics of the CaO/Ca(OH)2 Hydration/Dehydration Reaction for Thermochemical Energy Storage Applications
,”
Ind. Eng. Chem. Res.
,
53
(
32
), pp.
12594
12601
.
24.
Criado
,
Y. A.
,
Alonso
,
M.
,
Abanades
,
J. C.
, and
Anxionnaz-Minvielle
,
Z.
,
2014
, “
Conceptual Process Design of a CaO/Ca(OH)2 Thermochemical Energy Storage System Using Fluidized Bed Reactors
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1085
1092
.
25.
Pardo
,
P.
,
Deydier
,
A.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cabassud
,
M.
, and
Cognet
,
P.
,
2014
, “
A Review on High Temperature Thermochemical Heat Energy Storage
,”
Renewable Sustainable Energy Rev.
,
32
, pp.
591
610
.
26.
Schmidt
,
M.
,
Gutierrez
,
A.
, and
Linder
,
M.
,
2017
, “
Thermochemical Energy Storage With CaO/Ca(OH)2—Experimental Investigation of the Thermal Capability at Low Vapor Pressures in a Lab Scale Reactor
,”
Appl. Energy
,
188
, pp.
672
681
.
27.
Huggins
,
R. A.
,
2010
,
Energy Storage
,
Springer
,
New York
.
28.
Dinçer
,
İ.
, and
Rosen
,
M. A.
,
2011
,
Thermal Energy Storage: Systems and Applications
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
29.
Arjmand
,
M.
,
Liu
,
L.
, and
Neretnieks
,
I.
,
2013
, “
Exergetic Efficiency of High-Temperature-Lift Chemical Heat Pump (CHP) Based on CaO/CO2 and CaO/H2O Working Pairs
,”
Int. J. Energy Res.
,
37
(
9
), pp.
1122
1131
.
30.
Lin
,
S.
,
Wang
,
Y.
, and
Suzuki
,
Y.
,
2009
, “
High-Temperature CaO Hydration/Ca(OH)2 Decomposition Over a Multitude of Cycles
,”
Energy Fuels
,
23
(
6
), pp.
2855
2861
.
31.
Pardo
,
P.
,
Anxionnaz-Minvielle
,
Z.
,
Rougé
,
S.
,
Cognet
,
P.
, and
Cabassud
,
M.
,
2014
, “
Ca(OH)2/CaO Reversible Reaction in a Fluidized Bed Reactor for Thermochemical Heat Storage
,”
Sol. Energy
,
107
, pp.
605
616
.
32.
Schaube
,
F.
,
Koch
,
L.
,
Wörner
,
A.
, and
Müller-Steinhagen
,
H.
,
2012
, “
A Thermodynamic and Kinetic Study of the De- and Rehydration of Ca(OH)2 at High H2O Partial Pressures for Thermo-Chemical Heat Storage
,”
Thermochim. Acta
,
538
, pp.
9
20
.
33.
Barin
,
I.
, 1993,
Thermochemical Data of Pure Substances
,
Wiley
,
Weinheim, Germany
.
34.
Hartman
,
M.
,
Trnka
,
O.
, and
Veselý
,
V.
,
1994
, “
Thermal Dehydration of Magnesium Hydroxide and Sintering of Nascent Magnesium Oxide
,”
AIChE J.
,
40
(
3
), pp.
536
542
.
35.
NIST, “NIST Chemistry WebBook: NIST Standard Reference Database Number 69,”
National Institute of Standards and Technology, Gaithersburg, MD
.
36.
Steag AG
,
2015
, “EBSILON Professional Dokumentation,” STEAG Energy Services GmbH, Essen, Germany.
37.
Wang
,
L.
,
Yang
,
Y.
,
Dong
,
C.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2014
, “
Systematic Optimization of the Design of Steam Cycles Using MINLP and Differential Evolution
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031601
.
38.
Szega
,
M.
, and
Żymełka
,
P.
,
2017
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(5), p. 052002.
39.
Herrmann
,
S.
,
Kahlert
,
S.
,
Wuerth
,
M.
, and
Spliethoff
,
H.
,
2017
, “
Thermo-Economic Evaluation of Novel Flexible CAES/CCPP Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011902
.
40.
Mathworks,
“MATLAB,” The Mathworks Inc., Natick, MA.
41.
VTU Energy
, “Gas Turbine Library,”
VTU Energy
, Raaba-Grambac, Austria.http://www.vtu-energy.com/en/leistungen/Gasturbinen-Bibliothek.php
42.
Steiner
,
P.
,
Schwaiger
,
K.
,
Walter
,
H.
, and
Haider
,
M.
,
2016
, “Active Fluidized Bed Technology Used for Thermal Energy Storage,”
ASME
Paper No. ES2016-59053.
43.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1991
,
Fluidization Engineering
,
2nd ed.
,
Butterworth-Heinemann
, Oxford, UK.
44.
Layden
,
G. K.
, and
Brindley
,
G. W.
,
1963
, “
Kinetics of Vapor-Phase Hydration of Magnesium Oxide
,”
J. Am. Ceram. Soc.
,
46
(
11
), pp.
518
522
.
45.
Bratton
,
R. J.
, and
Brindley
,
G. W.
,
1965
, “
Kinetics of Vapor Phase Hydration of Magnesium Oxide—II: Dependence on Temperature and Water Vapor Pressure
,”
Trans. Faraday Soc.
,
61
(
509
), pp.
1017
1025
.
46.
Halikia, I.
, and
Economacou, A.
,
1993
, “
Application of Various Methods of Nonisothermal Kinetic Analysis to Magnesium Hydroxide Decomposition
,”
Int. J. Chem. Kinet.
,
25
(
8
), pp.
609
631
.
47.
Halikia
,
I.
,
Neou-Syngouna
,
P.
, and
Kolitsa
,
D.
,
1998
, “
Isothermal Kinetic Analysis of the Thermal Decomposition of Magnesium Hydroxide Using Thermogravimetric Data
,”
Thermochim. Acta
,
320
(
1–2
), pp.
75
88
.
48.
Nahdi
,
K.
,
Rouquerol
,
F.
, and
Trabelsi Ayadi
,
M.
,
2009
, “
Mg(OH)2 Dehydroxylation: A Kinetic Study by Controlled Rate Thermal Analysis (CRTA)
,”
Solid State Sci.
,
11
(
5
), pp.
1028
1034
.
49.
Ren
,
H.
,
Chen
,
Z.
,
Wu
,
Y.
,
Yang
,
M.
,
Chen
,
J.
,
Hu
,
H.
, and
Liu
,
J.
,
2014
, “
Thermal Characterization and Kinetic Analysis of Nesquehonite, Hydromagnesite, and Brucite, Using TG-DTG and DSC Techniques
,”
J. Therm. Anal. Calorim.
,
115
(
2
), pp.
1949
1960
.
50.
Ishitobi
,
H.
,
Uruma
,
K.
,
Takeuchi
,
M.
,
Ryu
,
J.
, and
Kato
,
Y.
,
2013
, “
Dehydration and Hydration Behavior of Metal-Salt-Modified Materials for Chemical Heat Pumps
,”
Appl. Therm. Eng.
,
50
(
2
), pp.
1639
1644
.
51.
Steck, M.
,
2012
, “Entwicklung und Bewertung von Algorithmen zur Einsatzplanerstellung virtueller Kraftwerke,” Ph.D. thesis, TU München, Munich, Germany.
52.
EEX,
2017, “EEX European Commission Allowance,” European Energy Exchange AG, Leipzig, Germany, accessed Dec. 18, 2017, https://www.eex.com/en/market-data/environmental-markets/spot-market/european-emission-allowances#!/2017/12/18
53.
EEX,
2017, “Natural Gas Daily Reference Price PEGAS,” European Energy Exchange AG, Leipzig, Germany, accessed Dec. 18, 2017, https://www.eex.com/en/market-data/natural-gas/spot-market/daily-reference-price#!/2017/07/03
54.
Vanessa Grimm
,
2007
, “Einbindung von Speichern für erneuerbare Energien in die Kraftwerkseinsatzplanung—Einfluss auf die Strompreise der Spitzenlast,” Ph.D. thesis, Ruhr-Universität Bochum, Bochum, Germany.
You do not currently have access to this content.