Liquid air energy storage (LAES) is a technology for bulk electricity storage in the form of liquid air with power output potentially above 10 MW and storage capacity of 100 s MWh. In this paper, we address the performance of LAES and the experimental evidences gathered through the first LAES pilot plant in the world developed by Highview power storage at Slough (London) and currently installed at the University of Birmingham (UK). We developed a numerical model of LAES plant and carried out an experimental campaign to gather new results which show the LAES operating principles, the reliability of the technology, the startup/shut down performance, and the influence of operational parameters. In summary, this work (a) contributes to the advancement of thermomechanical storage systems, (b) provides new experimental evidences and results for LAES technology, and (c) highlights the crucial aspects to necessarily improve the performance of LAES.

References

1.
IEA
,
2016
, “World Energy Outlook,” International Energy Agency, Paris, France, accessed Nov. 13, 2017, https://www.iea.org/publications/freepublications/publication/WorldEnergy Outlook2016ExecutiveSummaryEnglish.pdf
2.
IEA
,
2016
, “Renewable Energy Medium-Term Market Report,” International Energy Agency, Paris, France, accessed Nov. 13, 2017, https://www.iea.org/Textbase/npsum/MTrenew2016sum.pdf
3.
D.
Martens
, ed.,
2013
, “EASE/EERA European Energy Storage Technology Development Roadmap Toward 2030,” European Association for Storage of Energy, Brussels, Belgium, accessed Nov. 13, 2017, https://www.eera-set.eu/wp-content/uploads/148885-EASE-recommendations-Roadmap-04.pdf
4.
Carbon Trust,
2016
, “Can Storage Help Reduce the Cost of a Future UK Electricity System?,” Carbon Trust, London, accessed Nov. 13, 2017, https://www.carbontrust.com/media/672486/energy-storage-report.pdf
5.
Cho
,
J.
,
Jeong
,
S.
, and
Kim
,
Y.
,
2015
, “
Commercial and Research Battery Technologies for Electrical Energy Storage Applications
,”
Prog. Energy Combust. Sci.
,
48
, pp.
84
101
.
6.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
569
596
.
7.
Aneke
,
M.
, and
Wang
,
M.
,
2016
, “
Energy Storage Technologies and Real Life Applications—A State of the Art Review
,”
Appl. Energy
,
179
, pp.
350
377
.
8.
Chauhan
,
A.
, and
Saini
,
R. P.
,
2014
, “
Review on Integrated Renewable Energy System Based Power Generation for Stand-Alone Applications: Configurations, Storage Options, Sizing Methodologies and Control
,”
Renewable Sustainable Energy Rev.
,
38
, pp.
99
120
.
9.
Luo
,
X.
,
Wang
,
J.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
53
.
10.
Zach
,
K. A.
, and
Auer
,
H.
,
2016
, “
Contribution of Bulk Energy Storage to Integrating Variable Renewable Energies in Future
,”
WIREs Energy Environ.
,
5
, pp. 451–469.
11.
Mahlia, T. M. I., Saktisahdan, T. J., Jannifar, A., Hasan, M. H., and Matseelar, H. S. C., 2014, “
A Review of Available Methods and Development on Energy Storage; Technology Update
,”
Renewable Sustainable Energy Rev.
,
33
, pp. 532–545.
12.
Sandia Corporation, 2016, “DOE Global Energy Storage Database” Sandia National Laboratories, Albuquerque, NM, accessed Nov. 13, 2017, https://www.energystorageexchange.org
13.
Chen
,
H.
,
Cong
,
T. N.
,
Yang
,
W.
,
Tan
,
C.
,
Li
,
Y.
, and
Ding
,
Y.
,
2009
, “
Progress in Electrical Energy Storage System: A Critical Review
,”
Prog. Nat. Sci
,
19
(3), pp.
291
312
.
14.
Ibrahim
,
H.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2008
, “
Energy Storage Systems—Characteristics and Comparisons
,”
Renewable Sustainable Energy Rev.
,
12
(5), pp.
1221
1250
.
15.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
.
16.
Venkataramani
,
G.
,
Parankusam
,
P.
,
Ramalingam
,
V.
, and
Wang
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage—A Path Way for Smart Gridand Polygeneration
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
895
907
.
17.
Drury
,
E.
,
Denholm
,
P.
, and
Sioshansi
,
R.
,
2011
, “
The Value of Compressed Air Energy Storage in Energy and Reserve Markets
,”
Energy
,
36
(8), pp.
4959
4973
.
18.
Cheng
,
H.
,
Ding
,
Y.
,
Peters
,
T.
, and
Berger
,
F.
, 2008, “A Method of Storing Energy and a Cryogenic Energy Storage System,” Highview Enterprises Limited, London, Patent No.
EP1989400 A1
.http://www.google.com/patents/EP1989400A1?cl=en
19.
Morgan
,
R.
,
Nelmes
,
S.
,
Gibson
,
E.
, and
Brett
,
G.
,
2015
, “
An Analysis of a Large-Scale Liquid Air Energy Storage System
,”
Proc. Inst. Civil Eng. Energy
,
168
(2), pp.
135
144
.
20.
Guizzi
,
G. L.
,
Michele
,
M.
,
Ludovica
,
M. T.
, and
Ruggero
,
M. V.
,
2015
, “
Thermodynamic Analysis of a Liquid Air Energy Storage System
,”
Energy
,
93
(Pt. 2), pp.
1639
1647
.
21.
Centre for Low Carbon Futures
,
2013
, “Liquid Air in the Energy and Transport Systems,” The Centre for Low Carbon Futures, Birmingham, UK, accessed Nov. 13, 2017, http://liquidair.org.uk/files/full-report.pdf
22.
Highview Power Storage, 2017, “Highview Power Storage,” Highview Power Storage, London, accessed Nov. 13, 2017, http://www.highview-power.com/
23.
Morgan
,
R.
, Nelmes, S., Gibson, E., and Brett, G.,
2014
, “
Liquid Air Energy Storage—Analysis and First Results From a Pilot Scale Demonstration Plant
,”
Appl. Energy
,
137
, pp.
845
853
.
24.
Klein
,
G.
, and
Nellis
,
2014
, “Mastering EES; F-Chart Software,” F-Chart Software, London, accessed Nov. 13, 2017, http://www.fchart.com/ees/mastering-ees.php
25.
Chang
,
H. M.
,
Lim
,
H. S.
, and
Choe
,
K. H.
,
2012
, “
Effect of Multi-Stream Heat Exchanger on Performance of Natural Gas Liquefaction With Mixed Refrigerant
,”
Cryogenics (Guildf).
,
52
(
12
), pp.
642
647
.
26.
Bindra
,
H.
,
Bueno
,
P.
,
Morris
,
J. F.
, and
Shinnar
,
R.
,
2013
, “
Thermal Analysis and Exergy Evaluation of Packed Bed Thermal Storage Systems
,”
Appl. Therm. Eng.
,
52
(2), pp.
255
263
.
27.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Zavattoni
,
S.
,
Barbato
,
M.
, and
Steinfeld
,
A.
,
2012
, “
Packed-Bed Thermal Storage for Concentrated Solar Power Pilot-Scale Demonstration and Industrial-Scale Design
,”
Sol. Energy
,
86
(10), pp.
3084
3098
.
You do not currently have access to this content.