The most critical component of an absorption heat transformer (AHT) is the absorber, by which the exothermic reaction is carried out, resulting in a useful thermal energy. This article proposed a model based on improving the performance of energy for an absorber with disks of graphite during the exothermic reaction, through an optimal strategy. Two models of artificial neural networks (ANN) were developed to predict the thermal energy, through two important factors: internal heat in the absorber (QAB) and the temperature of the working solution of the absorber outlet (TAB). Confronting the simulated and real data, a satisfactory agreement was appreciated, obtaining a mean absolute percentage error (MAPE) value of 0.24% to calculate QAB and of 0.17% to calculate TAB. Furthermore, from these ANN models, the inverse neural network (ANNi) allowed improves the thermal efficiency of the absorber (QAB and TAB). To find the optimal values, it was necessary to propose an objective function, where the genetic algorithms (GAs) were indicated. Finally, by applying the ANNi–GAs model, the optimized network configuration was to find an optimal value of concentrated solution of LiBr–H2O and the vapor inlet temperature to the absorber. The results obtained from the optimization allowed to reach a value of QAB from 1.77 kW to 2.44 kW, when a concentrated solution of LiBr–H2O at 59% was used and increased the value of TAB from 104.66 °C to 109.2 °C when a vapor inlet temperature of 73 °C was used.

References

References
1.
Abumandour
,
E.-S.
,
Mutelet
,
F.
, and
Alonso
,
D.
,
2016
, “
Performance of an Absorption Heat Transformer Using New Working Binary Systems Composed of {Ionic Liquid and Water}
,”
Appl. Therm. Eng.
,
94
, pp.
579
589
.
2.
Jung, C. W., An, S. S., and Kang, Y. T.,
2014
, “
Thermal Performance Estimation of Ammonia-Water Plate Bubble Absorbers for Compression/Absorption Hybrid Heat Pump Application
,”
Energy
,
75
, pp.
371
378
.
3.
Donnellan
,
P.
,
Cronin
,
K.
, and
Byrne
,
E.
,
2015
, “
Recycling Waste Heat Energy Using Vapour Absorption Heat Transformers: A Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1290
1304
.
4.
Rivera
,
W.
,
Best
,
R.
,
Cardoso
,
M. J.
, and
Romero
,
R. J.
,
2015
, “
A Review of Absorption Heat Transformers
,”
Appl. Therm. Eng.
,
91
, pp.
654
670
.
5.
Ertas
,
A.
,
Gandhidasan
,
P.
, and
Luthan
,
J. J.
,
1987
, “
Feasibility Study of Ammonia-Water Vapor Absorption Heat Transformer
,”
ASME J. Energy Resour. Technol.
,
109
(
2
), pp.
96
100
.
6.
Ishida
,
M.
, and
Ji
,
J.
,
1999
, “
Graphical Exergy Study on Single Stage Absorption Heat Transformer
,”
Appl. Therm. Eng.
,
19
(
11
), pp.
1191
1206
.
7.
Venegas
,
M.
,
Rodríguez
,
P.
,
Leucona
,
A.
, and
Izquierdo
,
M.
,
2005
, “
Spray Absorbers in Absorption Systems Using Lithium Nitrate–Ammonia Solution
,”
Int. J. Refrig.
,
28
(
4
), pp.
554
564
.
8.
Ryan
,
W. A.
,
1994
, “
Water Absorption in an Adiabatic Spray of Aqueous Lithium Bromide Solution
,”
International Absorption Heat Pump Conference
, New Orleans, LA, Jan. 19–21, ASME AES-Vol. 31, pp.
155
162
.
9.
Sözen
,
A.
, and Yücesu, H. S.,
2007
, “
Performance Improvement of Absorption Heat Transformer
,”
Renewable Energy
,
32
(
2
), pp.
267
284
.
10.
Rivera
,
W.
,
Siqueiros
,
J.
,
Martínez
,
H.
, and
Huicochea
,
A.
,
2010
, “
Exergy Analysis of a Heat Transformer for Water Purification Increasing Heat Source Temperature
,”
Appl. Therm. Eng.
,
30
(14–15), pp.
2088
2095
.
11.
Sekar
,
S.
, and
Saravanan
,
R.
,
2011
, “
Exergetic Performance of Eco Friendly Absorption Heat Transformer for Seawater Desalination
,”
Int. J. Exergy
,
8
(
1
), pp. 51–67.
12.
Gomri
,
R.
,
2009
, “
Energy and Exergy Analyses of Seawater Desalination System Integrated in a Solar Heat Transformer
,”
Desalination
,
249
(
1
), pp.
188
196
.
13.
Colorado
,
D.
,
Demesa
,
N.
,
Huicochea
,
A.
, and
Hernández
,
J. A.
,
2015
, “
Irreversibility Analysis of the Absorption Heat Transformer Coupled to a Single Effect Evaporation Process
,”
Appl. Therm. Eng.
,
92
, pp.
71
80
.
14.
Zhang
,
N.
,
Lior
,
N.
, and
Han
,
W.
,
2016
, “
Performance Study and Energy Saving Process Analysis of Hybrid Absorption-Compression Refrigeration Cycles
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061603
.
15.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2015
, “
Applications of Artificial Neural Networks for Thermal Analysis of Heat Exchangers—A Review
,”
Int. J. Therm. Sci.
,
90
, pp.
150
172
.
16.
Mohanraj
,
M.
,
Jayaraj
,
S.
, and
Muraleedharan
,
C.
,
2012
, “
Applications of Artificial Neural Networks for Refrigeration, Air-Conditioning and Heat Pump Systems—A Review
,”
Renewable Sustainable Energy Rev.
,
16
(
2
), pp.
1340
1358
.
17.
Manshad
,
A. K.
,
Rostami
,
H.
,
Moein-Hosseini
,
S.
, and
Rezaei
,
H.
,
2016
, “
Application of Artificial Neural Network–Particle Swarm Optimization Algorithm for Prediction of Gas Condensate Dew Point Pressure and Comparison With Gaussian Processes Regression–Particle Swarm Optimization Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032903
.
18.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062903
.
19.
García
,
J. M.
, Padilla, R. V., and
Sanjuan
,
M. E.
,
2016
, “
Response Surface Optimization of an Ammonia–Water Combined Power/Cooling Cycle Based on Exergetic Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022001
.
20.
Laidi
,
M.
, and
Hanini
,
S.
,
2013
, “
Optimal Solar COP Prediction of a Solar-Assisted Adsorption Refrigeration System Working With Activated Carbon/Methanol as Working Pairs Using Direct and Inverse Artificial Neural Network
,”
Int. J. Refrig.
,
36
(
1
), pp.
247
257
.
21.
Hernández
,
J. A.
,
Bassam
,
A.
,
Siqueiros
,
J.
, and
Juárez-Romero
,
D.
,
2009
, “
Optimum Operating Conditions for a Water Purification Process Integrated to a Heat Transformer With Energy Recycling Using Neural Network Inverse
,”
Renewable Energy
,
34
(
4
), pp.
1084
1091
.
22.
Colorado
,
D.
,
Hernández
,
J. A.
,
Rivera
,
W.
,
Martínez
,
H.
, and
Juárez
,
D.
,
2011
, “
Optimal Operation Conditions for a Single-Stage Heat Transformer by Means of an Artificial Neural Network Inverse
,”
Appl. Energy
,
88
(
4
), pp.
1281
1290
.
23.
Morales
,
L. I.
,
Conde-Gutiérrez
,
R. A.
,
Hernández
,
J. A.
,
Huicochea
,
A.
,
Juárez-Romero
,
D.
, and
Siqueiros
,
J.
,
2015
, “
Optimization of an Absorption Heat Transformer With Two-Duplex Components Using Inverse Neural Network and Solved by Genetic Algorithm
,”
Appl. Therm. Eng.
,
85
, pp.
322
333
.
24.
Olarte-Cortés
,
J.
,
Torres-Merino
,
J.
, and
Siqueiros
,
J.
,
2013
, “
Experimental Study of a Graphite Disks Absorber Couple to a Heat Transformer
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
29
36
.
25.
McNelly
,
A.
,
1979
, “
Thermodynamic Properties of Aqueous Solutions of Lithium Bromide
,”
ASHRAE Trans.
,
85
(
1
), pp.
413
434
.
26.
Holland
,
F. A.
,
Siqueiros
,
J.
,
Santoyo
,
S.
,
Heard
,
C. L.
, and
Santoyo
,
E. R.
,
1999
,
Water Purification Using Heat Pumps
,
E & FN Spon
,
New York
.
27.
NIST/ASME
,
1998
, “
Steam Properties Database. Version 2.1
,” U.S. Department of Commerce, Gaithersburg, MA.
28.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation Validation and Uncertainty Analysis for Engineers
,
Wiley
,
Hoboken, NJ
.
29.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel–Kerosene–Ethanol Blends: A Fuzzy-Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
30.
Mukherjee
,
I.
, and
Routroy
,
S.
,
2012
, “
Comparing the Performance of Neural Networks Developed by Using Levenberg–Marquardt and Quasi-Newton With the Gradient Descent Algorithm for Modelling a Multiple Response Grinding Process
,”
Expert Syst. Appl.
,
39
(
3
), pp.
2397
2407
.
31.
Verma
,
S. P.
,
2005
, “
Estadística Básica Para el Manejo de Datos Experimentales: Aplicación en la Geoquímica (Geoquimiometria)
,” Universidad Nacional Autónoma de México, Mexico.
32.
Verma
,
S. P.
,
2009
, “
Evaluation of Polynomial Regression Models for the Student t and Fisher F Critical Values, the Best Interpolation Equations From Double and Triple Natural Logarithm Transformation of Degrees of Freedom up to 1000, and Their Applications to Quality Control in Science and Engineering
,”
Rev. Mex. Cienc. Geol.
,
26
, pp.
79
92
.
33.
Meza
,
M.
,
Márquez-Nolasco
,
A.
,
Huicochea
,
A.
,
Juárez-Romero
,
D.
, and
Siqueiros
,
J.
,
2014
, “
Experimental Study of an Absorption Heat Transformer With Heat Recycling to the Generator
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
171
178
.
34.
Hamzaoui
,
Y. E. L.
,
Rodríguez
,
J. A.
,
Hernandez
,
J. A.
, and
Salazar
,
V.
,
2015
, “
Optimization of Operating Conditions for Steam Turbine Using an Artificial Neural Network Inverse
,”
Appl. Therm. Eng.
,
75
, pp.
648
657
.
35.
Garson
,
G. D.
,
1991
, “
Interpreting Neural-Network Connection Weights
,”
Artif. Intell. Expert Syst.
,
6
(
4
), pp.
47
51
.
36.
Liu
,
F.-B.
,
2008
, “
A Modified Genetic Algorithm for Solving the Inverse Heat Transfer Problem of Estimating Plan Heat Source
,”
Int. J. Heat Mass Transfer
,
51
(15–16), pp.
3745
3752
.
37.
Ilamathi
,
P. P.
,
Selladurai
,
V. V.
, and
Balamurugan
,
K. K.
,
2013
, “
Modeling and Optimization of Unburned Carbon in Coal-Fired Boiler Using Artificial Neural Network and Genetic Algorithm
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032201
.
38.
Ibarra-Bahena
,
J.
,
Romero
,
R. J.
,
Velazquez-Avelar
,
L.
,
Valdez-Morales
,
C. V.
, and
Galindo-Luna
,
Y. R.
,
2015
, “
Experimental Thermodynamic Evaluation for a Single Stage Heat Transformer Prototype Build With Commercial PHEs
,”
Appl. Therm. Eng.
,
75
, pp.
1262
1270
.
39.
Sekar
,
S.
, and
Saravanan
,
R.
,
2011
, “
Experimental Studies on Absorption Heat Transformer Coupled Distillation System
,”
Desalination
,
274
(1–3), pp.
292
301
.
You do not currently have access to this content.