Large district heating networks greatly benefit from topological changes brought by the construction of loops. The overall effects of malfunctions are smoothed, making existing networks intrinsically robust. In this paper, we demonstrate the use of topology optimization to find the network layout that maximizes robustness under an investment constraint. The optimized design stems from a large ground structure that includes all the possible looping elements. The objective is an original robustness measure, that neither requires any probabilistic analysis of the input uncertainty nor the identification of bounds on stochastic variables. Our case study on the Turin district heating network confirms that robustness and cost are antagonist objectives: the optimized designs obtained by systematically relaxing the investment constraint lay on a smooth Pareto front. A sudden steepness variation divides the front in two different regions. For small investments topological modifications are observed, i.e., new branches appear continuously in the optimized layout as the investment increases. Here, large robustness improvements are possible. However, at high investments no topological modifications are visible and only limited robustness gains are obtained.

References

References
1.
Song
,
Z.-P.
,
2008
, “
A Theoretical Study on Decentralized Space Heating System
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
032401
.
2.
Klaassen
,
R.
, and
Patel
,
M.
,
2013
, “
District Heating in the Netherlands Today: A Techno-Economic Assessment for NGCC-CHP (Natural Gas Combined Cycle Combined Heat and Power)
,”
Energy
,
54
, pp.
63
73
.
3.
Herrmann
,
S.
,
Kahlert
,
S.
,
Wuerth
,
M.
, and
Spliethoff
,
H.
,
2017
, “
Thermo-Economic Evaluation of Novel Flexible CAES/CCPP Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011902
.
4.
Fang
,
H.
,
Xia
,
J.
, and
Jiang
,
Y.
,
2015
, “
Key Issues and Solutions in a District Heating System Using Low-Grade Industrial Waste Heat
,”
Energy
,
86
, pp.
589
602
.
5.
Persson
,
U.
, and
Münster
,
M.
,
2016
, “
Current and Future Prospects for Heat Recovery From Waste in European District Heating Systems: A Literature and Data Review
,”
Energy
,
110
, pp.
116
128
.
6.
Ozgener
,
L.
, and
Ozgener
,
O.
,
2008
, “
Monitoring of Energetic and Exergetic Performance Analysis of Salihli Geothermal District Heating System
,”
ASME J. Energy Resour. Technol.
,
130
(
2
), p.
022302
.
7.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccani
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021601
.
8.
Buoro
,
D.
,
Pinamonti
,
P.
, and
Reini
,
M.
,
2014
, “
Optimization of a Distributed Cogeneration System With Solar District Heating
,”
Appl. Energy
,
124
, pp.
298
308
.
9.
Ericsson
,
K.
, and
Werner
,
S.
,
2016
, “
The Introduction and Expansion of Biomass Use in Swedish District Heating Systems
,”
Biomass Bioenergy
,
94
, pp.
57
65
.
10.
Giustolisi
,
O.
,
Berardi
,
L.
, and
Laucelli
,
D.
,
2012
, “
Optimal Water Distribution Network Design Accounting for Valve Shutdowns
,”
J. Water Resour. Plann. Manage.
,
140
(
3
), pp.
277
287
.
11.
Torii
,
A. J.
, and
Lopez
,
R. H.
,
2011
, “
Reliability Analysis of Water Distribution Networks Using the Adaptive Response Surface Approach
,”
J. Hydraulic Eng.
,
138
(
3
), pp.
227
236
.
12.
Fragiadakis
,
M.
,
Vamvatsikos
,
D.
, and
Christodoulou
,
S. E.
,
2012
, “
Reliability Assessment of Urban Water Distribution Networks Under Seismic Loads
,”
Water Resour. Manage.
,
27
(10), pp. 3739–3764.
13.
Tolson
,
B. A.
,
Maier
,
H. R.
,
Simpson
,
A. R.
, and
Lence
,
B. J.
,
2004
, “
Genetic Algorithms for Reliability-Based Optimization of Water Distribution Systems
,”
J. Water Resour. Plann. Manage.
,
130
(
1
), pp.
63
72
.
14.
Todini
,
E.
,
2000
, “
Looped Water Distribution Networks Design Using a Resilience Index Based Heuristic Approach
,”
Urban Water
,
2
(
2
), pp.
115
122
.
15.
Farmani
,
R.
,
Walters
,
G. A.
, and
Savic
,
D. A.
,
2005
, “
Trade-Off Between Total Cost and Reliability for Anytown Water Distribution Network
,”
J. Water Resour. Plann. Manage.
,
131
(
3
), pp.
161
171
.
16.
Tanyimboh
,
T.
, and
Templeman
,
A.
,
1993
, “
Calculating Maximum Entropy Flows in Networks
,”
J. Oper. Res. Soc.
, pp.
383
396
.
17.
Noh
,
Y.
,
Choi
,
K.
,
Lee
,
I.
,
Gorsich
,
D.
, and
Lamb
,
D.
,
2011
, “
Reliability-Based Design Optimization With Confidence Level Under Input Model Uncertainty Due to Limited Test Data
,”
Struct. Multidiscip. Optim.
,
43
(
4
), pp.
443
458
.
18.
Yari
,
G.
, and
Farsani
,
Z. A.
,
2015
, “
Application of the Maximum Entropy Method for Determining a Sensitive Distribution in the Renewable Energy Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042006
.
19.
Giustolisi
,
O.
,
Laucelli
,
D.
, and
Colombo
,
A. F.
,
2009
, “
Deterministic Versus Stochastic Design of Water Distribution Networks
,”
J. Water Resour. Plann. Manage.
,
135
(
2
), pp.
117
127
.
20.
Jung
,
D.
,
Kang
,
D.
,
Kim
,
J. H.
, and
Lansey
,
K.
,
2013
, “
Robustness-Based Design of Water Distribution Systems
,”
J. Water Resour. Plann. Manage.
,
140
(
11
), pp.
13
28
.
21.
Babayan
,
A.
,
Kapelan
,
Z.
,
Savic
,
D.
, and
Walters
,
G.
,
2005
, “
Least-Cost Design of Water Distribution Networks Under Demand Uncertainty
,”
J. Water Resour. Plann. Manage.
,
131
(
5
), pp.
375
382
.
22.
Chakraborty
,
S.
,
Bhattacharjya
,
S.
, and
Haldar
,
A.
,
2012
, “
Sensitivity Importance-Based Robust Optimization of Structures With Incomplete Probabilistic Information
,”
Int. J. Numer. Methods Eng.
,
90
(
10
), pp.
1261
1277
.
23.
Creaco
,
E.
,
Fortunato
,
A.
,
Franchini
,
M.
, and
Mazzola
,
M.
,
2014
, “
Comparison Between Entropy and Resilience as Indirect Measures of Reliability in the Framework of Water Distribution Network Design
,”
Procedia Eng.
,
70
, pp.
379
388
.
24.
Gong
,
W.
,
Khoshnevisan
,
S.
, and
Juang
,
C. H.
,
2014
, “
Gradient-Based Design Robustness Measure for Robust Geotechnical Design
,”
Can. Geotech. J.
,
51
(
11
), pp.
1331
1342
.
25.
Han
,
J.
, and
Kwak
,
B.
,
2004
, “
Robust Optimization Using a Gradient Index: Mems Applications
,”
Struct. Multidiscip. Optim.
,
27
(
6
), pp.
469
478
.
26.
Kim
,
N.-K.
,
Kim
,
D.-H.
,
Kim
,
D.-W.
,
Kim
,
H.-G.
,
Lowther
,
D. A.
, and
Sykulski
,
J. K.
,
2010
, “
Robust Optimization Utilizing the Second-Order Design Sensitivity Information
,”
IEEE Trans. Magnetics
,
46
(
8
), pp.
3117
3120
.
27.
Sciacovelli
,
A.
,
Verda
,
V.
, and
Borchiellini
,
R.
,
2013
,
Numerical Design of Thermal Systems
,
CLUT
,
Torino, Italy
.
28.
Bondy
,
J. A.
, and
Murty
,
U. S. R.
,
1976
,
Graph Theory With Applications
, Elsevier, Amsterdam, The Netherlands.
29.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
, Berlin.
30.
Grossmann
,
I. E.
,
1996
, “
Mixed-Integer Optimization Techniques for Algorithmic Process Synthesis
,”
Adv. Chem. Eng.
,
23
, pp.
171
246
.
31.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, Hemisphere Publishing Corporation, Washington, DC.
32.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
33.
Guelpa
,
E.
,
Toro
,
C.
,
Sciacovelli
,
A.
,
Melli
,
R.
,
Sciubba
,
E.
, and
Verda
,
V.
,
2016
, “
Optimal Operation of Large District Heating Networks Through Fast Fluid-Dynamic Simulation
,”
Energy
,
102
, pp.
586
595
.
You do not currently have access to this content.