Recently, engineers and researchers reconsider honeycomb sandwich structures due to their vast application in industries and aviation arenas. In this study, a new honeycomb sandwich material was developed and tested. The purpose of the present work is to investigate numerically and experimentally with a comparative study on the effects of heat transfer on design parameters and geometry for different types of exotic honeycomb structures taking in account radiation within the cell and conduction in the cell walls. The numerical solution for temperature profiles for different types of exotic honeycomb structures and solid disk are performed in order to inspect the variation of heat transfer. The modeling results show a good agreement with the experimental results. The present work demonstrates that the temperature profile for reentrant is the highest one compared to splined and stiffened which reaches around 10% at temperature of the front surface Tin = 100 °C. It was found that the rib length enhances significantly heat transfer. Results showed also that stiffened honeycomb has a good insulation and metallic honeycomb core structure has a good thermal insulation characteristic for the highest instantaneous temperature, whereas reentrant honeycomb has a good heat transmission.

References

References
1.
Tlili
,
I.
,
Timoumi
,
Y.
, and
Ben Nasrallah
,
S.
,
2006
, “
Numerical Simulation and Losses Analysis in a Stirling Engine
,”
Int. J. Heat Technol.
,
24
(
1
), pp.
97
105
.https://www.researchgate.net/publication/288118531_Numerical_simulation_and_losses_analysis_in_a_stirling_engine
2.
Tlili
,
I.
,
Timoumi
,
Y.
, and
Ben Nasrallah
,
S.
,
2007
, “
Thermodynamic Analysis of Stirling Heat Engine With Regenerative Losses and Internal Irreversibilities
,”
Int. J. Engine Res.
,
9
(
1
), pp.
45
56
.
3.
Timoumi
,
Y.
,
Tlili
,
I.
, and
Ben Nasrallah
,
S.
,
2008
, “
Performance Optimization of Stirling Engines
,”
Renewable Energy
,
33
(
9
), pp.
2134
2144
.
4.
Ahmadi
,
M. H.
,
Ahmadi
,
M. A.
,
Pourfayaz
,
F.
,
Hosseinzade
,
H.
,
Acıkkalp
,
E.
,
Tlili
,
I.
, and
Feidt
,
M.
,
2016
, “
Designing a Powered Combined Otto and Stirling Cycle Power Plant Through Multi-Objective Optimization Approach
,”
Renewable Sustainable Energy Rev.
,
62
, pp. 585–595.
5.
Tlili
,
I.
,
2015
, “
Renewable Energy in Saudi Arabia: Current Status and Future Potentials
,”
Environ., Dev. Sustainability
,
17
(
4
), pp.
859
886
.
6.
Sa'ed
,
A.
, and
Tlili
,
I.
,
2015
, “
Numerical Investigation of Working Fluid Effect on Stirling Engine Performance
,”
Int. J. Therm. Environ. Eng.
,
10
(
1
), pp.
31
36
.http://iasks.org/wp-content/uploads/pdf/1-VOL10-5.pdf
7.
Tlili
,
I.
,
2012
, “
Finite Time Thermodynamic Evaluation of Endoreversible Stirling Heat Engine at Maximum Power Conditions
,”
Renewable Sustainable Energy Reviews
,
16
(4), pp. 2234–2241.
8.
Tlili
,
I.
,
2012
, “
Thermodynamic Study on Optimal Solar Stirling Engine Cycle Taking Into account the Irreversibilities Effects
,”
Energy Procedia
,
14
, pp. 584–591.
9.
Tlili
,
I.
,
2012
, “
A Numerical Investigation of an Alpha Stirling Engine
,”
Int. J. Heat Technol.
,
30
(1).
10.
Tlili
,
I.
, and
Musmar
,
S. A.
,
2013
, “
Thermodynamic Evaluation of a Second Order Simulation for Yoke Ross Stirling Engine
,”
Energy Convers. Manage.
,
68
, pp. 149–160.
11.
Tlili
,
I.
,
Timoumi
,
Y.
, and
Nasrallah
,
S. B.
,
2008
, “
Analysis and Design Consideration of Mean Temperature Differential Stirling Engine for Solar Application
,”
Renewable Energy
,
33
(
8
), pp.
1911
1921
.
12.
Timoumi
,
Y.
,
Tlili
,
I.
, and
Nasrallah
,
S. B.
,
2008
, “
Design and Performance Optimization of GPU-3 Stirling Engines
,”
Energy
,
33
(
7
), pp.
1100
1114
.
13.
Timoumi
,
Y.
,
Tlili
,
I.
, and
Nasrallah
,
S. B.
,
2007
, “
Reduction of Energy Losses in a Stirling Engine
,”
Heat Technol.
,
25
(
1
), pp.
84
93
.
14.
Lu
,
C.
,
Zhao
,
M.
,
Jie
,
L.
,
Wang
,
J.
,
Gao
,
Y.
,
Cui
,
X.
, and
Chen
,
P.
,
2015
, “
Stress Distribution on Composite Honeycomb Sandwich Structure Suffered From Bending Load
,”
Procedia Eng.
,
99
, pp.
405
412
.
15.
Zheng
,
L.
,
Wu
,
D.
,
Zhou
,
A.
,
Pan
,
B.
,
Wang
,
Y.
, and
Wang
,
J.
,
2014
, “
Experimental and Numerical Study on Heat Transfer Characteristics of Metallic Honeycomb Core Structure in Transient Thermal Shock Environments
,”
Int. J. Thermophys.
,
35
(
8
), pp.
1557
1576
.
16.
Zheng
,
L.
,
Wu
,
D.
,
Bing
,
P.
,
Wang
,
Y.
, and
Sun
,
B.
,
2013
, “
Experimental Investigation and Numerical Simulation of Heat-Transfer Properties of Metallic Honeycomb Core Structure Up to 900 °C
,”
Appl. Therm. Eng.
,
60
(
1–2
), pp.
379
386
.
17.
Rehan
,
A.
,
Habib
,
M. A.
,
Elshafei
,
M.
, and
Alzaharnah
,
I. T.
,
2017
, “
Modeling Time Variations of Boiler Efficiency
,”
ASME. J. Energy Resour. Technol.
,
140
(
5
), p. 052001.
18.
Chidom, C. C.
,
2013
, “
Lightweight Sandwich Panels in Cold Stores and Refrigerated Warehouses
,” University of Applied Science, Construction Engineering Visamäki, pp.
1
35
.
19.
Kantha Rao
,
K.
, and
Jayathirtha Rao
,
K.
,
2012
, “
Thermostructural Analysis of Honeycomb Sandwich Panels
,”
Int. J. Eng. Sci. Adv. Technol.
,
2
(5), pp.
1402
1409
.http://ijesat.org/Volumes/2012_Vol_02_Iss_05/IJESAT_2012_02_05_31.pdf
20.
Madejski
,
P.
,
Janda
,
T.
,
Taler
,
J.
,
Nabagło
,
D.
,
Węzik
,
R.
, and
Mazur
,
M.
,
2017
, “
Analysis of Fouling Degree of Individual Heating Surfaces in a Pulverized Coal Fired Boiler
,”
ASME. J. Energy Resour. Technol.
,
140
(
3
), p.
032003
.
21.
Nguyen
,
D. D.
,
2009
, “
Analysis and Testing of Heat Transfer through Honeycomb Panels
,” California Polytechnic State University, San Luis Obispo, CA.
22.
Boukendil
,
M.
,
Abdelbaki
,
A.
, and
Zrikem
,
Z.
,
2012
, “
Detailed Numerical Simulation of Coupled Heat Transfer by Conduction, Natural Convection and Radiation Through Double Honeycomb Walls
,”
Build. Simul.
,
5
(
4
), pp.
337
344
.
23.
Ibrar Hussain
,
M.
,
Mokheimer
,
E. A.
, and
Ahmed
,
S.
,
2016
, “
Optimal Design of a Solar Collector for Required Flux Distribution on a Tubular Receiver
,”
ASME. J. Energy Resour. Technol.
,
139
(
1
), p.
012006
.
24.
Njoku
,
H. O.
,
Ekechukwu
,
O. V.
, and
Onyegegbu
,
S. O.
,
2017
, “
Numerical Investigation of Entropy Generation in Stratified Thermal Stores
,”
ASME. J. Energy Resour. Technol.
,
140
(
1
), p.
011901
.
25.
Liu
,
S.
,
Zhang
,
Y.
, and
Liu
,
P.
,
2008
, “
New Analytical Model for Heat Transfer Efficiency of Metallic Honeycomb Structures
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6254
6258
.
26.
Tian
,
J.
,
Lu
,
T. J.
,
Hodson
,
H. P.
,
Queheillalt
,
D. T.
, and
Wadley
,
H. N. G.
,
2007
, “
Cross Flow Heat Exchange of Textile Cellular Metal Core Sandwich Panels
,”
Int. J. Heat Mass Transfer
,
50
(
13–14
), pp.
2521
2536
.
27.
Hou
,
X.
,
Deng
,
Z.
, and
Yin
,
G.
,
2014
, “
Application of Transfer Matrix Method in Heat Transfer Performance Analysis of Multi-Re-Entrant Honeycomb Structures
,”
Heat Mass Transfer
,
50
(
12
), pp.
1765
1782
.
28.
Ryzhenkov
,
A. V.
,
Lapin
,
E. E.
,
Loginova
,
N. A.
,
Sitdikov
,
D. R.
, and
Grigor'ev
,
S. V.
,
2016
, “
Evaluation of the Thermal Efficiency of a High-Temperature Heat-Insulation Structure Based on Honeycomb Plastic
,”
Therm. Eng.
,
63
(
6
), pp.
445
448
.
29.
Rao
,
K. K.
,
Rao
,
J. K.
, and
Gupta
,
K. S. A. V. S. S.
,
2015
, “
Heat Insulation Analysis of an Aluminium Honeycomb Sandwich Structure
,”
J. Therm. Eng.
,
1
(
3
), pp.
210
220
.
30.
Yongcun
,
Z.
, and
Shutian
,
L.
,
2014
, “
Optimal Design of Multistage Two-Dimensional Cellular-Cored Sandwich Panel Heat Exchanger
,”
Adv. Mech. Eng.
,
6
, pp.
1
9
.
31.
Saha
,
B. P.
,
Johnson
,
R.
, and
Jayaram
,
V.
,
2012
, “
Comparative Evaluation of Thermal Conductivity of Zirconia Solid and Honeycomb Structures
,”
Exp. Heat Transfer
,
25
(
4
), pp.
267
281
.
32.
Pasternak
,
E.
,
Shufrin
,
I.
, and
Dyskin
,
A. V.
,
2016
, “
Thermal Stresses in Hybrid Materials With Auxetic Inclusions
,”
Compos. Struct.
,
138
, pp.
313
321
.
33.
Zhao
,
J.
,
Xie
,
Z. H.
,
Li
,
L.
,
Li
,
W.
, and
Tian
,
J.
, “
On Effective Thermal Conductivity of Super Alloy Honeycomb Core in Sandwich Structure
,”
18th International Conference on Composite Materials
, Jeju Island, South Korea, Aug. 21–26.http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug26(Friday)/F07%20Sandwich%20Materials%20and%20Structures/F07-6-AF1185.pdf
34.
Innocenti
,
P.
, and
Scarpa
,
F.
,
2009
, “
Thermal Conductivity Properties and Heat Transfer Analysis of Multi-Re-Entrant Auxetic Honeycomb Structures
,”
J. Compos. Mater.
,
43
(
21
), pp.
2419
2439
.
35.
Liu
,
H.
, and
Nagano
,
K.
,
2014
, “
Numerical Simulation of an Open Sorption Thermal Energy Storage System Using Composite Sorbents Built Into a Honeycomb Structure
,”
Int. J. Heat Mass Transfer
,
78
, pp.
648
661
.
36.
Boldrin
,
L.
,
Scarpa
,
F.
, and
Rajasekaran
,
R.
,
2014
, “
Thermal Conductivities of Iso-Volume Centre-Symmetric Honeycombs
,”
Compos. Struct.
,
113
, pp.
498
506
.
37.
Lai
,
C.-M.
, and
Hokoi
,
S.
,
2014
, “
Thermal Performance of an Aluminum Honeycomb Wallboard Incorporating Microencapsulated PCM
,”
Energy Build.
,
73
, pp.
37
47
.
38.
Ramos Archibold
,
A.
,
Bhardwaj
,
A.
,
Rahman
,
M. M.
,
Yogi Goswami
,
D. D.
, and
Stefanakos
,
E. L.
,
2016
, “
Comparison of Numerical and Experimental Assessment of a Latent Heat Energy Storage Module for a High-Temperature Phase-Change Material
,”
ASME. J. Energy Resour. Technol.
,
138
(
5
), p.
052007
.
39.
Mikeska
,
T.
,
2015
, “
Energy Performance of Ventilation, Heating and Cooling Systems Integrated in Sandwich Panel of High Performance Concrete
,” Technical University of Denmark, Lyngby, Denmark.
40.
Ye
,
T.
,
Xunliang
,
L.
,
Zhi
,
WEN.
,
Xiaohong
,
F.
,
Zhi
,
L.
, and
Haiquan
,
Y.
,
2012
, “
The Simulation and Analysis of Heat Transfer Process of Honeycomb Regenerator
,”
Appl. Mech. Mater.
,
130–134
, pp.
1810
1815
.
41.
Raghib Shakeel
,
M.
,
Al-Sadah
,
J.
, and
Mokheimer
,
E. A.
,
2017
, “
Analytical and Numerical Modeling of Solar Chimney
,”
ASME. J. Energy Resour. Technol.
,
139
(
3
), p.
031201
.
42.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl-H2O and LiBr-H2O Type Solar Cooling System
,”
ASME. J. Energy Resour. Technol.
,
140
(5), p.
051204
.
43.
Swarm
,
R. T.
,
1958
, “
Heat Transfer and Thermal Stresses in Sandwich Panels
,” National Advisory Committee for Aeronautic, Langley Aeronautical Laboratory, Langley Field, VA.
44.
Bezazi
,
A.
,
Remillat
,
C.
,
Innocenti
,
P.
, and
Scarpa
,
F.
,
2008
, “
In-Plane Mechanical and Thermal Conductivity Properties of a Rectangular–Hexagonal Honeycomb Structure
,”
Compos. Struct.
,
84
(
3
), pp.
248
255
.
45.
Kyu-Taek
,
H.
,
2013
, “
Finite Element Analysis and Experimental Validation of Forming Process for Honeycomb Structure Seal
,”
Adv. Sci. Technol. Lett.
,
41
, pp.
30
33
.
46.
Laaidi
,
N.
,
2014
, “
Application of Infrared Thermography in the Characterization of Voids and Honeycomb in Concrete Structure: Experimental Results and Numerical Simulations
,”
Int. J. Struct. Integrity
,
5
(
2
), pp.
107
119
.
You do not currently have access to this content.