As a novel jet technology, liquid nitrogen jet (LNJ) is expected to effectively break rocks and further provide a high-efficiency method for drilling, especially geothermal drilling. Using this technology, rocks can be broken down by the coupled effects of cryogenic cooling and jet impingement. In this study, transient downhole jet flow field and heat transfer during drilling with LNJ were simulated. Then, the distributions of temperature (including LNJ and ambient rock), velocity, and pressure at different times were analyzed. Finally, the effects of the parameters on jet impingement and rock cooling performance were discussed. Results indicated that cryogenic LNJ could be efficiently generated in the downhole region. The temperature of the rock surface remarkably decreased as the LNJ reached the bottomhole. The high-speed LNJ caused axial impingement and radial shear effects on the bottomhole rock. The rock cooling performance caused by the LNJ was influenced by the initial rock temperature. With the increase of the initial rock temperature, the drop amplitude of the rock temperature also increased. The impingement capability of the LNJ was improved by increasing the nozzle diameter and the nozzle pressure drop. With the increase of standoff distance, the wall pressure and the radial velocity of the bottomhole decreased while increasing the impingement scope. The confining pressure hardly influenced the rock cooling performance and jet impingement capability, thereby indicating that LNJ could work even at high confining pressure conditions.

References

References
1.
Rui
,
Z.
,
Peng
,
F.
,
Ling
,
K.
,
Chang
,
H.
,
Chen
,
G.
, and
Zhou
,
X.
,
2017
, “
Investigation Into the Performance of Oil and Gas Projects
,”
J. Nat. Gas. Sci. Eng.
,
38
, pp.
12
20
.
2.
Huang
,
Y.
,
Zhang
,
B.
,
Wei
,
X.
, and
Sun
,
R.
,
2015
, “
Model of Interval Multi-Attribute Optimization for Overseas Oil-Gas Projects
,”
Petrol. Sci.
,
12
(
2
), pp.
345
354
.
3.
Lopes
,
Y. G.
, and
de Almedia
,
A. T.
,
2015
, “
Assessment of Synergies for Selecting a Project Portfolio in the Petroleum Industry Based on a Multi-Attribute Utility Function
,”
J. Petrol. Sci. Eng.
,
126
, pp.
131
140
.
4.
Rui
,
Z.
,
Lu
,
J.
,
Zhang
,
Z.
,
Guo
,
R.
,
Ling
,
K.
,
Zhang
,
R.
, and
Patil
,
S.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas. Sci. Eng.
,
42
, pp.
31
39
.
5.
Zhang
,
N.
,
Sun
,
Q.
,
Fadlelmula
,
M.
,
Rahman
,
A.
, and
Wang
,
Y.
,
2017
, “
A New Method of Porous Space Reconstruction Using Multipoint Histogram Technology
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032909
.
6.
Ma
,
P.
,
Lin
,
C.
,
Zhang
,
S.
,
Dong
,
C.
,
Zhao
,
Y.
,
Dong
,
D.
,
Shehzad
,
K.
,
Awais
,
M.
,
Guo
,
D.
, and
Mu
,
X.
,
2018
, “
Diagenetic History and Reservoir Quality of Tight Sandstones: A Case Study From Shiqianfeng Sandstones in Upper Permian of Dongpu Depression, Bohai Bay Basin, Eastern China
,”
Mar. Petrol. Geol.
,
89
, pp.
280
299
.
7.
Rui
,
Z.
,
Li
,
C.
,
Peng
,
P.
,
Ling
,
K.
,
Chen
,
G.
,
Zhou
,
X.
, and
Chang
,
H.
,
2017
, “
Development of Industry Performance Metrics for Offshore Oil and Gas Project
,”
J. Nat. Gas. Sci. Eng.
,
39
, pp.
44
53
.
8.
Chang
,
O.
,
Kinzel
,
M.
,
Dilmore
,
R.
, and
Wang
,
J.
,
2018
, “
Physics of Proppant Transport Through Hydraulic Fracture Network
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032912
.
9.
Wang
,
L.
,
Wang
,
S.
, and
Zhang
,
R.
,
2017
, “
Review of Multi-Scale and Multi-Physical Simulation Technologies for Shale and Tight Gas Reservoir
,”
J. Nat. Gas. Sci. Eng.
,
37
, pp.
560
578
.
10.
Guo
,
J.
,
Luo
,
B.
,
Lu
,
C.
,
Lai
,
J.
, and
Ren
,
J.
,
2017
, “
Numerical Investigation of Hydraulic Fracture Propagation in a Layered Reservoir Using the Cohesive Zone Method
,”
Eng. Fract. Mech.
,
186
, pp.
195
207
.
11.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
12.
Sun
,
J.
,
Gamboa
,
E.
, and
Schechter
,
D.
,
2016
, “
An Integrated Workflow for Characterization and Simulation of Complex Fracture Networks Utilizing Microseismic and Horizontal Core Data
,”
J. Nat. Gas. Sci. Eng.
,
34
, pp.
1347
1360
.
13.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
, “
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
,”
SPE Canada Unconventional Resources Conference
, Calgary, AB, Canada, Mar. 13–14, SPE Paper No.
SPE-189829-MS
.
14.
Rui
,
Z.
,
Han
,
G.
,
Zhang
,
H.
,
Wang
,
S.
,
Pu
,
H.
, and
Ling
,
K.
,
2017
, “
A New Model to Evaluate Two Leak Points in a Gas Pipeline
,”
J. Nat. Gas. Sci. Eng.
,
46
, pp.
491
497
.
15.
Li
,
G.
,
Shen
,
Z.
,
Huang
,
Z.
,
Tian
,
S.
,
Shi
,
H.
, and
Song
,
X.
,
2014
, “
Research and Applications of Novel Jet Techniques in Well Drilling, Completion and Fracturing
,”
Sci. Found. China
,
22
(
2
), pp.
68
80
.http://www.cnki.com.cn/Article/CJFDTotal-ZJJJ201402043.htm
16.
Wang
,
B.
,
Li
,
G.
,
Huang
,
Z.
,
Ma
,
T.
,
Zheng
,
D.
, and
Li
,
K.
,
2017
, “
Lab Testing and Finite Element Method Simulation of Hole Deflector Performance for Radial Jet Drilling
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032906
.
17.
Huang
,
Z.
,
Li
,
G.
,
Shi
,
H.
,
Niu
,
J.
, and
Song
,
X.
,
2015
, “
Abrasive Water Jet Perforating Experiments Under Ambient Pressures
,”
Atomization Spray
,
25
(
7
), pp.
617
627
.
18.
Tian
,
S.
,
Sheng
,
M.
,
Li
,
Z.
,
Ge
,
H.
, and
Li
,
G.
,
2017
, “
Acoustic Emission Characteristics of Sedimentary Rocks Under High-Velocity Waterjet Impingement
,”
Rock Mech. Rock Eng.
,
50
(
10
), pp.
2785
2794
.
19.
Liu
,
S.
,
Li
,
G.
,
Shi
,
H.
,
Huang
,
Z.
,
Tian
,
S.
, and
Yang
,
R.
,
2015
, “
Dynamics of Cleaning by Hydraulic Pulsed Jet
,”
Atomization Spray
,
25
(
11
), pp.
1013
1024
.
20.
Wei
,
M.
,
Li
,
G.
,
Shi
,
H.
,
Shi
,
S.
,
Li
,
Z.
, and
Zhang
,
Y.
,
2016
, “
Theories and Applications of Pulsed-Jet Drilling With Mechanical Specific Energy
,”
SPE J.
,
21
(
1
), pp.
303
310
.
21.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
22.
Xiao
,
B.
,
Jiang
,
T.
, and
Zhang
,
S.
,
2017
, “
Novel Nanocomposite Fiber-Laden Viscoelastic Fracturing Fluid for Coal Bed Methane Reservoir Stimulation
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022906
.
23.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu
,
Z.
, and
Gai
,
N.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuel
,
31
(
10
), pp.
10479
10489
.
24.
Cui
,
G.
,
Ren
,
S.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2017
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
(in press).
25.
Zhou
,
Z.
,
Lu
,
Y.
,
Tang
,
J.
,
Zhang
,
X.
, and
Li
,
Q.
,
2017
, “
Numerical Simulation of Supercritical Carbon Dioxide Jet at Well Bottom
,”
Appl. Therm. Eng.
,
121
, pp.
210
217
.
26.
Lyu
,
Z.
,
Li
,
G.
,
Song
,
X.
,
Cui
,
L.
,
Ji
,
G.
,
Wang
,
Z.
,
Hu
,
X.
, and
Xu
,
Z.
,
2017
, “
Comparative Numerical Analysis and Optimization in Downhole Combustion Chamber of Thermal Spallation Drilling
,”
Appl. Therm. Eng.
,
119
, pp.
481
489
.
27.
Cai
,
C.
,
Li
,
G.
,
Huang
,
Z.
, and
Gao
,
F.
,
2017
, “
Velocity Distribution Characteristics and Parametric Sensitivity Analysis of Liquid Nitrogen Jet
,”
Eng. Rev.
,
37
(
1
), pp.
1
10
.http://er.riteh.hr/index.php/ER/article/view/652
28.
Ji
,
W.
,
Song
,
U.
,
Meng
,
M.
, and
Huang
,
H.
,
2017
, “
Pore Characterization of Isolated Organic Matter From High Matured Gas Shale Reservoir
,”
Int. J. Coal Geol.
,
174
, pp.
31
40
.
29.
Zeng
,
J.
,
Wang
,
X.
,
Guo
,
J.
, and
Zeng
,
F.
,
2017
, “
Composite Linear Flow Model for Multi-Fractured Horizontal Wells in Heterogeneous Shale Reservoir
,”
J. Nat. Gas. Sci. Eng.
,
38
, pp.
527
548
.
30.
Kolle
,
J. J.
,
2000
, “
Coiled Tubing Drilling With Supercritical Carbon Dioxide
,”
SPE/CIM International Conference on Horizontal Well Technology
, AB, Canada, Nov. 6–8, SPE Paper No.
SPE-65534-MS
.
31.
Wang
,
H.
,
Shen
,
Z.
, and
Li
,
G.
,
2012
, “
Development and Prospect of Supercritical Carbon Dioxide Drilling
,”
Petrol. Sci. Technol.
,
30
(
16
), pp.
1670
1676
.
32.
Du
,
Y.
,
Wang
,
R.
,
Ni
,
H.
,
Li
,
M.
,
Song
,
W.
, and
Song
,
H.
,
2012
, “
Determination of Rock-Breaking Performance of High-Pressure Supercritical Carbon Dioxide Jet
,”
J. Hydrodyn.
,
24
(
4
), pp.
554
560
.
33.
Song
,
X.
,
Lyu
,
Z.
,
Li
,
G.
,
Hu
,
X.
, and
Shi
,
Y.
,
2017
, “
Numerical Analysis on the Impact of the Flow Field of Hydrothermal Jet Drilling for Geothermal Wells in a Confined Cooling Environment
,”
Geothermics
,
66
, pp.
39
49
.
34.
Song
,
X.
,
Lyu
,
Z.
,
Li
,
G.
,
Hu
,
X.
, and
Shi
,
Y.
,
2016
, “
Numerical Analysis of Characteristics of Multi-Orifice Nozzle Hydrothermal Jet Impact Flow Field and Heat Transfer
,”
J. Nat. Gas. Sci. Eng.
,
35
, pp.
79
88
.
35.
Huang
,
Z.
,
Li
,
G.
,
Cai
,
C.
,
Li
,
R.
, and
Wu
,
X.
,
2016
, “
Prospect of Liquid Nitrogen Applied in Oil & Gas Drilling and Fracturing
,”
11th Pacific Rim International Conference on Water Jet Technology
, Jiangsu, China, Oct. 16–18, pp.
9
22
.
36.
Shouldice
,
S. P.
,
1964
, “
Liquid Nitrogen Developments and Applications in Drilling and Completion Operations
,”
J. Can. Petrol. Technol.
,
3
(
4
), pp.
158
164
.
37.
Friehauf
,
K. E.
, and
Sharma
,
M. M.
,
2009
, “
New Compositional Model for Hydraulic Fracturing With Energized Fluids
,”
SPE Prod. Oper.
,
24
(
4
), pp.
562
572
.
38.
McDaniel
,
B. W.
,
Grundmann
,
S. R.
, and
Kendrick
,
W. D.
,
1997
, “
Applications of Cryogenic Nitrogen as a Hydraulic Fracturing Fluid
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Oct. 5–8, SPE Paper No.
SPE-38623
.
39.
Grundmann
,
S. R.
,
Rodvelt
,
G. D.
,
Dials
,
G. A.
, and
Allen
,
R. E.
,
1998
, “
Cryogenic Nitrogen as a Hydraulic Fracturing Fluid in the Devonian Shale
,”
SPE Eastern Regional Meeting
, Pittsburgh, PA, Nov. 9–11, SPE Paper No.
SPE-51067
.
40.
Cha
,
M.
,
Alqahtani
,
N. B.
,
Yin
,
X.
,
Kneafsey
,
T. J.
,
Yao
,
B.
, and
Wu
,
Y.
,
2017
, “
Laboratory System for Studying Cryogenic Thermal Rock Fracturing for Well Stimulation
,”
J. Petrol. Sci. Eng.
,
156
, pp.
780
789
.
41.
Wang
,
L.
,
Yao
,
B.
,
Cha
,
M.
,
Alqahtani
,
N. B.
,
Patterson
,
T. W.
,
Kneafsey
,
T. J.
,
Miskimins
,
J. L.
,
Yin
,
X.
, and
Wu
,
Y.
,
2016
, “
Waterless Fracturing Technologies for Unconventional Reservoirs-Opportunities for Liquid Nitrogen
,”
J. Nat. Gas. Sci. Eng.
,
35
(
Part A
), pp.
160
174
.
42.
Li
,
Z.
,
Xu
,
H.
, and
Zhang
,
C.
,
2016
, “
Liquid Nitrogen Gasification Fracturing Technology for Shale Gas Development
,”
J. Petrol. Sci. Eng.
,
138
, pp.
253
256
.
43.
Cha
,
M.
,
Yin
,
X.
,
Kneafsey
,
T.
,
Johanson
,
B.
,
Alqahtani
,
N.
,
Miskimins
,
J.
,
Patterson
,
T.
, and
Wu
,
Y.
,
2014
, “
Cryogenic Fracturing for Reservoir Stimulation–Laboratory Studies
,”
J. Petrol. Sci. Eng.
,
124
, pp.
436
450
.
44.
Cai
,
C.
,
Li
,
G.
,
Huang
,
Z.
,
Tian
,
S.
,
Shen
,
Z.
, and
Fu
,
X.
,
2015
, “
Experiment of Coal Damage Due to Super-Cooling With Liquid Nitrogen
,”
J. Nat. Gas. Sci. Eng.
,
22
, pp.
42
48
.
45.
Cai
,
C.
,
Gao
,
F.
,
Li
,
G.
,
Huang
,
Z.
, and
Hou
,
P.
,
2016
, “
Evaluation of Coal Damage and Cracking Characteristics Due to Liquid Nitrogen Cooling on the Basis of the Energy Evolution Laws
,”
J. Nat. Gas. Sci. Eng.
,
29
, pp.
30
36
.
46.
Alqatahni
,
N. B.
,
Cha
,
M.
,
Yao
,
B.
,
Yin
,
X.
,
Kneafsey
,
T. J.
,
Wang
,
L.
,
Wu
,
Y.
, and
Miskimins
,
J. L.
,
2016
, “
Experimental Investigation of Cryogenic Fracturing of Rock Specimens Under True Triaxial Confining Stresses
,”
SPE Europec Featured at 78th EAGE Conference and Exhibition
, Vienna, Austria, May 30–June 2, SPE Paper No.
SPE-180071-MS
.
47.
Qin
,
L.
,
Zhai
,
C.
,
Liu
,
S.
,
Xu
,
J.
,
Tang
,
Z.
, and
Yu
,
G.
,
2016
, “
Failure Mechanism of Coal After Cryogenic Freezing With Cyclic Liquid Nitrogen and Its Influences on Coalbed Methane Exploitation
,”
Energy Fuel
,
30
(
10
), pp.
8567
8578
.
48.
Cai
,
C.
,
Huang
,
Z.
,
Li
,
G.
, and
Gao
,
F.
,
2015
, “
Particle Velocity Distributions of Abrasive Liquid Nitrogen Jet and Parametric Sensitivity Analysis
,”
J. Nat. Gas. Sci. Eng.
,
27
, pp.
1657
1666
.
49.
Cai
,
C.
,
Gao
,
F.
,
Huang
,
Z.
, and
Yang
,
Y.
,
2017
, “
Numerical Simulation on the Flow Field Characteristics and Impact Capability of Liquid Nitrogen Jet
,”
Energy Explor. Exploit.
(in press).http://journals.sagepub.com/doi/10.1177/0144598717743994
50.
Zhang
,
S.
,
Huang
,
Z.
,
Li
,
G.
,
Wu
,
X.
,
Peng
,
C.
, and
Zhang
,
W.
,
2018
, “
Numerical Analysis of Transient Conjugate Heat Transfer and Thermal Stress Distribution in Geothermal Drilling With High-Pressure Liquid Nitrogen Jet
,”
Appl. Therm. Eng.
,
129
, pp.
1348
1357
.
51.
Zhang
,
S.
,
Huang
,
Z.
,
Huang
,
P.
,
Wu
,
X.
, and
Xiong
,
C.
,
2018
, “
Numerical and Experimental Analysis of Hot Dry Rock Fracturing Stimulation With High-Pressure Abrasive Liquid Nitrogen Jet
,”
J. Pet. Sci. Eng.
,
163
, pp.
156
165
.
52.
Sharif
,
M. A. R.
, and
Banerjee
,
A.
,
2009
, “
Numerical Analysis of Heat Transfer Due to Confined Slot-Jet Impingement on a Moving Plate
,”
Appl. Therm. Eng.
,
29
(
2–3
), pp.
532
540
.
53.
Qiu
,
L.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2018
, “
Confined Jet Impingement Boiling in a Chamber With Staggered Pillars
,”
Appl. Therm. Eng.
,
131
, pp.
724
733
.
54.
Mehra
,
B.
,
Simo
,
T. J. V.
,
Habchi
,
C.
, and
Harion
,
J. L.
,
2018
, “
Local Field Synergy Analysis of Conjugate Heat Transfer for Different Plane Fin Configurations
,”
Appl. Therm. Eng.
,
130
, pp.
1105
1120
.
55.
Zhang
,
Y.
,
Lian
,
Z.
,
Abdelal
,
G. F.
, and
Lin
,
T.
,
2018
, “
Numerical and Experimental Investigation on Flow Capacity and Erosion Wear of Blooey Line in Gas Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054501
.
56.
Batchelor
,
G. K.
,
2000
,
Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
57.
Span
,
R.
,
Lemmon
,
E. W.
,
Jacobsen
,
R. T.
,
Wagner
,
W.
, and
Yokozeki
,
A.
,
2000
, “
A Reference Equation of State for the Thermodynamic Properties of Nitrogen for Temperatures From 63.151 to 1000 K and Pressures to 2200 MPa
,”
J. Phys. Chem. Ref. Data
,
29
(
6
), pp.
1361
1433
.
58.
Lemmon
,
E. W.
, and
Jacobsen
,
R. T.
,
2004
, “
Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air
,”
Int. J. Thermophys.
,
25
(
1
), pp.
21
69
.
59.
Feng
,
Y.
, and
Gray
,
K. E.
,
2017
, “
Discussion on Field Injectivity Tests During Drilling
,”
Rock Mech. Rock Eng.
,
50
(
2
), pp.
493
498
.
60.
Feng
,
Y.
,
Li
,
X.
, and
Gray
,
K. E.
,
2017
, “
Development of a 3D Numerical Model for Quantifying Fluid-Driven Interface Debonding of an Injector Well
,”
Int. J. Greenh. Gas Control
,
62
, pp.
76
90
.
61.
Roy
,
B. N.
,
2002
,
Fundamentals of Classical and Statistical Thermodynamics
,
Wiley
,
New York
.
You do not currently have access to this content.