New induction manifold designs have been developed in this work to enhance the turbulence intensity and improve the mixing quality inside diesel engine cylinders. These new designs employ a spiral-helical shape with three different helical diameters (1D, 2D, 3D; where D is the inner diameter of the manifold) and three port outlet angles: 0 deg, 30 deg, and 60 deg. The new manifolds have been manufactured using three-dimensional printing technique. Computational fluid dynamics simulations have been conducted to estimate the turbulent kinetic energy (TKE) and the induction swirl generated by these new designs. The combustion characteristics that include the maximum pressure raise rate (dP/dθ) and the peak pressure inside the cylinder have been measured for a direct injection (DI) diesel engine utilizing these new manifold designs. In addition, engine performance and emissions have also been evaluated and compared with those of the normal manifold of the engine. It was found that the new manifolds with 1D helical diameter produce a high TKE and a reasonably strong induction swirl, while the ones with 2D and 3D generate lower TKEs and higher induction swirls than those of 1D. Therefore, dP/dθ and peak pressure were the highest with manifolds 1D, in particular manifold m (D, 30). Moreover, this manifold has provided the lowest fuel consumption with the engine load by about 28% reduction in comparison with the normal manifold. For engine emissions, m (D, 30) manifold has generated the lowest CO, SO2, and smoke emissions compared with the normal and other new manifolds as well, while the NO emission was the highest with this manifold.

References

References
1.
Reddy
,
P. R.
,
Rajulu
,
K. G.
, and
Naidu
,
T. V. S.
,
2014
, “
Experimental Investigation on Diesel Engines by Swirl Induction With Different Manifolds
,”
Int. J. Curr. Eng. Technol.
,
2
(
2
), pp.
488
492
.
2.
Murali Krishna
,
B.
,
Bijucherian
,
A.
, and
Mallikarjuna
,
J. M.
,
2010
, “
Effect of Intake Manifold Inclination on Intake Valve Flow Characteristics of a Single Cylinder Engine Using Particle Image Velocimetry
,”
Int. J. Eng. Appl. Sci.
,
6
(
2
), pp. 119–125.
3.
Soloiu
,
V.
,
Duggan
,
M.
,
Ochieng
,
H.
,
Williams
,
D.
,
Molina
,
G.
, and
Vlcek
,
B.
,
2013
, “
Investigation of Low Temperature Combustion Regimes of Biodiesel With N-Butanol Injected in the Intake Manifold of a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041101
.
4.
Cadrazco
,
M.
,
Agudelo
,
J. R.
,
Orozco
,
L. Y.
, and
Estrada
,
V.
,
2017
, “
Genotoxicity of Diesel Particulate Matter Emitted by Port-Injection of Hydrous Ethanol and n-Butanol
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042207
.
5.
Gubba
,
S. R.
,
Jupudi
,
R. S.
,
Pasunurthi
,
S. S.
,
Wijeyakulasuriya
,
S. D.
,
Primus
,
R. J.
,
Klingbeil
,
A.
, and
Finney
,
C. E. A.
,
2018
, “
Capturing Pressure Oscillations in Numerical Simulations of Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082205
.
6.
Abo-Elfadl
,
S.
, and
Abd El-Sabor Mohamed
,
A.
,
2017
, “
The Effect of the Helical Inlet Port Design and the Shrouded Inlet Valve Condition on Swirl Generation in Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032203
.
7.
Agarwal
,
A. K.
,
Gadekar
,
S.
, and
Singh
,
A. P.
,
2017
, “
In-Cylinder Flow Evolution Using Tomographic Particle Imaging Velocimetry in an Internal Combustion Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012207
.
8.
Nord
,
A. J.
,
Hwang
,
J. T.
, and
Northrop
,
W. F.
,
2016
, “
Emissions From a Diesel Engine Operating in a Dual-Fuel Mode Using Port-Fuel Injection of Heated Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022204
.
9.
Badra
,
J. A.
,
Sim
,
J.
,
Elwardany
,
A.
,
Jaasim
,
M.
,
Viollet
,
Y.
,
Chang
,
J.
,
Amer
,
A.
, and
Im
,
H. G.
,
2016
, “
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052202
.
10.
Mittal
,
M.
,
Donahue
,
R.
, and
Winnie
,
P.
,
2015
, “
Evaluating the Influence of Exhaust Back Pressure on Performance and Exhaust Emissions Characteristics of a Multicylinder, Turbocharged, and Aftercooled Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032207
.
11.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
12.
Sarkar
,
A.
, and
Saha
,
U. K.
,
2017
, “
Effect of Intake Charge Preheating and Equivalence Ratio in a Dual Fuel Diesel Engine Run on Biogas and Ethanol-Blended Diesel
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
041802
.
13.
Li
,
X.
,
Cheng
,
Y.
,
Ji
,
S.
, and
Lan
,
X.
,
2017
, “
Influence of Key Structural Parameters of Combustion Chamber on the Performance of Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042203
.
14.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
Singapore
.
15.
Olmeda
,
P.
,
Martin
,
J.
,
Garcia
,
A.
,
Villalta
,
D.
, et al. .,
2017
, “
A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency
,”
SAE Int. J. Engines
,
10
(
3
), pp.
1204
1216
.
16.
Martins
,
J.
,
2009
, “
Design of an Inlet Track of a Small IC Engine for Swirl Enhancement
,”
20th International Congress of Mechanical Engineering
, Gramado, Brazil, Nov. 15–20, pp. 1–9.
17.
Leach
,
F.
,
Davy
,
M.
,
Weall
,
A.
, and
Cooper
,
B.
,
2017
, “
Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine
,”
SAE
Paper No. 2017-01-2429.
18.
Rathore
,
G.
,
Goel
,
A.
, and
Choudhary
,
S.
,
2016
, “
Numerical Study of in-Cylinder Flow Using Screw Threaded Intake Manifold in a Single Cylinder Diesel Engine
,”
SAE
Paper No. 2016-28-0136.
19.
Gao
,
J.
, and
Cuneo
,
G.
,
2016
, “
Numerical Simulation of Intake Port and in-Cylinder Flow in a Two-Valve Multi-Cylinder Diesel Engine
,”
SAE
Paper No. 2016-01-2158.
20.
Brusiani
,
F.
,
Falfari
,
S.
, and
Cazzoli
,
G.
,
2014
, “
Tumble Motion Generation in Small Gasoline Engines: A New Methodological Approach for the Analysis of the Influence of the Intake Duct Geometrical Parameters
,”
Energy Procedia
,
45
, pp.
997
1006
.
21.
Ceviz
,
M. A.
, and
Akın
,
M.
,
2010
, “
Design of a New SI Engine Intake Manifold With Variable Length Plenum
,”
Energy Convers. Manage.
,
51
(
11
), pp.
2239
2244
.
22.
Zirngibl
,
S.
,
Held
,
S.
,
Prager
,
M.
, and
Wachtmeister
,
G.
,
2017
, “
Experimental and Simulative Approaches for the Determination of Discharge Coefficients for Inlet and Exhaust Valves and Ports in Internal Combustion Engines
,”
SAE
Paper No. 2017-01-5022.
23.
Dawat
,
V.
, and
Venkitachalam
,
G.
,
2016
, “
Influence of a High-Swirling Helical Port With Axisymmetric Piston Bowls on in-Cylinder Flow in a Small Diesel Engine
,”
SAE
Paper No. 2016-01-0587.
24.
Kondapalli
,
P. S.
,
2000
, “
General Guidelines for Improving Burst Pressure Strength of Welded Nylon Air Intake Manifolds
,”
SAE
Paper No. 2000-01-0040.
25.
Krömer
,
G.
,
Pölzl
,
H. W.
,
Thude
,
M.
, and
Leitner
,
P.
,
1991
, “
The New Audi V6 Engine
,”
SAE
Paper No. 910678.
26.
Narayanaswamy
,
K.
,
2006
, “
Continuously Variable Intake Manifold With Intelligent Position Control
,” Siemens VDO Automotive Inc., Chatham, CA, U.S. Patent No. 6983,727.
27.
Verkleeren
,
R. L.
, “
Split Plenum Manifold With Variable Runners
,” Ford Global Technologies LLC, Dearborn, MI, U.S. Patent No.
5762,036
.https://patents.google.com/patent/US5762036A/en?q=Split&q=Plenum&q=Manifold&q=With&q=Variable&q=Runners&oq=Split+Plenum+Manifold+With+Variable+Runners
28.
Moroto
,
K.
,
1998
, “
Variable Intake Air Apparatus
,” Toyota Motor Corp, Tokyo, Japan, U.S. Patent No. 5740,770.
29.
Jiang
,
S.
,
Zhu
,
S.
,
Wen
,
H.
, and
Huang
,
S.
,
2012
, “
Parameter Analysis of Diesel Helical Intake Port Numerical Design
,”
Energy Procedia
, 16(Pt. A), pp.
558
563
.
30.
Nikulin
,
V.
,
Savtchenko
,
S.
, and
Ashgriz
,
N.
,
2017
, “
A Model for the Turbulent Suppression in Swirling Flows
,”
Phys. Lett. A
,
381
(
48
), pp.
3989
3995
.
31.
Savtchenko
,
S.
,
Ashgriz
,
N.
,
Jolliffe
,
C.
,
Cousins
,
L.
, and
Gamble
,
H.
,
2014
, “
Effect of a Swirling Desolvation Gas Flow on Atmospheric Pressure Ion Sources
,”
J. Am. Soc. Mass Spectrom.
,
25
(
9
), pp.
1549
1556
.
32.
Imao
,
S.
,
Itoh
,
M.
, and
Harada
,
T.
,
1996
, “
Turbulent Characteristics of the Flow in an Axially Rotating Pipe
,”
Int. J. Heat Fluid Flow
,
17
(
5
), pp.
444
451
.
33.
Brethouwer
,
G.
,
Duguet
,
Y.
, and
Schlattre
,
P.
,
2012
, “
Turbulent—Laminar Coexistence in Wall Flows With Coriolis, Buoyancy, or Lorentz Forces
,”
J. Fluid Mech.
,
704
, pp.
137
172
.
34.
Wei
,
M.
,
Li
,
S.
,
Xiao
,
H.
, and
Guo
,
G.
,
2017
, “
Combustion Performance and Pollutant Emissions Analysis Using Diesel/Gasoline/Iso-Butanol Blends in a Diesel Engine
,”
Energy Convers. Manage.
,
149
, pp.
381
391
.
35.
Kumar
,
B. R.
, and
Saravanan
,
S.
,
2015
, “
Effects of Iso-Butanol/Diesel and n-Pentanol/Diesel Blends on Performance and Emissions of a DI Diesel Engine Under Premixed LTC (low Temperature Combustion) Mode
,”
Fuel
,
170
, pp.
49
59
.
36.
Huang
,
H.
,
Zhou
,
C.
,
Liu
,
Q.
,
Wang
,
Q.
, and
Wang
,
X.
,
2016
, “
An Experimental Study on the Combustion and Emission Characteristics of a Diesel Engine Under Low Temperature Combustion of Diesel-Gasoline-n-Butanol Blends
,”
Appl. Energy
,
170
(
15
), pp.
219
231
.
37.
Selim
,
M. Y. E.
,
2009
, “
Reducing the Viscosity of Jojoba Methyl Ester Diesel Fuel and Effects on Diesel Engine Performance and Roughness
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1781
1788
.
38.
Selim
,
M. Y. E.
,
2005
, “
Effect of Engine Parameters and Gaseous Fuel Type on the Cyclic Variability of Dual Fuel Engines
,”
Fuel
,
84
(
7–8
), pp.
961
971
.
39.
García-Contreras
,
R.
,
Armas
,
O.
,
Mata
,
C.
, and
Villanueva
,
O.
,
2017
, “
Impact of Gas to Liquid and Diesel Fuels on the Engine Cold Start
,”
Fuel
,
203
, pp.
298
307
.
40.
Li
,
X.
,
Qiao
,
Z.
,
Su
,
L.
,
Li
,
X.
, and
Liu
,
F.
,
2017
, “
The Combustion and Emission Characteristics of a Multi-Swirl Combustion System in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
115
, pp.
1203
1212
.
41.
Abdul Gafoor
,
C. P.
, and
Gupta
,
R.
,
2015
, “
Numerical Investigation of Piston Bowl Geometry and Swirl Ratio on Emission From Diesel Engines
,”
Energy Convers. Manage.
,
101
, pp.
541
551
.
42.
Cha
,
J.
,
Yoon
,
S.
,
Lee
,
S.
, and
Park
,
S.
,
2015
, “
Effects of Intake Oxygen Mole Fraction on the Near-Stoichiometric Combustion and Emission Characteristics of a CI (Compression Ignition) Engine
,”
Energy
,
80
, pp.
677
86
.
43.
Xiao
,
H.
,
Zeng
,
P.
,
Li
,
Z.
,
Zhao
,
L.
, and
Fu
,
X.
,
2016
, “
Combustion Performance and Emissions of 2-Methylfuran Diesel Blends in a Diesel Engine
,”
Fuel
,
175
, pp.
157
163
.
44.
Kilicarslan
,
A.
, and
Qatu
,
M.
,
2017
, “
Exhaust Gas Analysis of an Eight Cylinder Gasoline Engine Based on Engine Speed
,”
Energy Procedia
,
110
, pp.
459
464
.
45.
Tan
,
P.-Q.
,
Zhao
,
J.-y.
,
Hu
,
Z.-y.
,
Lou
,
D.-M.
, and
Du
,
A.-M.
,
2013
, “
Effects of Fuel Properties on Exhaust Emissions From Diesel Engines
,”
J. Fuel Chem. Technol.
,
41
(
3
), pp.
347
355
.
You do not currently have access to this content.