A thermodynamic and economic comparative analysis are presented for waste heat recovery (WHR) from the heavy oil production with steam-assisted gravity drainage (SAGD) process employing organic Rankine cycle (ORC) and Kalina cycle (KC). The liquefied natural gas (LNG) cold energy is employed as the cold source. Thus, a combined cooling heating and power system is proposed. The effect of key parameters on thermodynamic performance is investigated. The results showed that increasing the turbine inlet temperature (TIT), ORC is more appropriate for WHR in SAGD process than KC, but KC provides better energy use and exergy efficiency, while the reverse situation occurs when the evaporation pressure is increased. The compression ratio has little effect on the cold exergy recovery efficiency of the refrigeration cycles. In addition, the total exergy destruction and the total WHR efficiency in the combined SAGD/KC are slightly higher than these in the combined SAGD/ORC. Moreover, for the TIT below 180 °C and the evaporation pressure above 6 MPa, the SAGD/KC can obtain more energy return on investment (EROI) than SAGD/ORC. The results obtained through economic analysis show that the use of the SAGD/ORC is more economical. Through the thermos-economic comparison of the two combined systems, it helps to choose different combined cycles according to the different actual operation, which can facilitate the future engineering applications.

References

References
1.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
2.
Fronk
,
B. M.
, and
Zada
,
K. R.
,
2016
, “
Effect of Heat and Mass Transfer Models on Low Temperature Kalina Cycle Waste Heat Recovery Microchannel Heat Exchanger Size
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022002
.
3.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052004
.
4.
Parker
,
A.
,
2012
, “
Energy Recovery in Passenger Cars
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022203
.
5.
Jubeh
,
N. M.
, and
Najjar
,
Y. S. H.
,
2014
, “
Cascaded Waste-Heat Recovery as a Green Technology for Energy Sustainability in Power Generation
,”
Int. J. Energy Res.
,
38
(
10
), pp.
1361
1365
.
6.
Zare
,
V.
,
2016
, “
A Comparative Thermodynamic Analysis of Two Tri-Generation Systems Utilizing Low-Grade Geothermal Energy
,”
Energy Convers. Manage.
,
118
(
7
), pp.
264
274
.
7.
Varma
,
G. V. P.
, and
Srinivas
,
T.
,
2016
, “
Power Generation From Low Temperature Heat Recovery
,”
Renewable Sustainable Energy Rev.
,
75
(
8
), pp.
402
414
.
8.
Li
,
R. X.
,
Wang
,
H. R.
,
Yao
,
E. R.
, and
Zhang
,
S. Y.
,
2016
, “
Thermo-Economic Comparison and Parametric Optimizations Among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC
,”
Energies
,
10
(
1
), p.
15
.
9.
Mahmoudi
,
S. M. S.
, and
Zare
,
V.
,
2015
, “
A Thermodynamic Comparison Between Organic Rankine and Kalina Cycles for Waste Heat Recovery From the Gas Turbine-Modular Helium Reactor
,”
Energy
,
79
(
1
), pp.
398
406
.
10.
Ma
,
Y.
,
Yang
,
L.
,
Lu
,
J.
, and
Pei
,
Y.
,
2017
, “
Techno‐Economic Comparison of Boiler Cold‐End Flue Gas Heat Recovery Processes for Efficient Hard‐Coal‐Fired Power Generation
,”
Int. J. Energy Res.
,
41
(
8
), pp.
1118
1133
.
11.
Singh
,
S.
, and
Dasgupta
,
M. S.
,
2016
, “
A Trans-Critical CO2 Heat Pump System for Waste Heat Utilization in Warm Weather Condition Applied to a Milk Refrigeration Plant
,”
International Compressor Engineering Conference at Purdue International Refrigeration and Air Conditioning Conference at Purdue International High Performance Buildings Conference at Purdue
, p. 2663.
12.
Xiao
,
S. H.
,
Luo
,
Q. H.
, and
Li
,
G. F.
,
2014
, “
Utilizing Thermoelectric Heat Pump to Heat Recovery of Shower Waste Water
,”
Appl. Mech. Mater.
,
521
(
2
), pp.
757
761
.
13.
Kim
,
Y. M.
,
Sohn
,
J. L.
, and
Yoon
,
E. S.
,
2017
, “
Supercritical CO2 Rankine Cycles for Waste Heat Recovery From Gas Turbine
,”
Energy
,
118
(
1
), pp.
893
905
.
14.
Ma
,
H.
,
Du
,
N.
,
Zhang
,
Z.
,
Fan
,
L.
,
Deng
,
N.
,
Li
,
C.
, and
Yu
,
S.
,
2017
, “
Assessment of the Optimum Operation Conditions on a Heat Pipe Heat Exchanger for Waste Heat Recovery in Steel Industry
,”
Renewable Sustainable Energy Rev.
,
79
(
11
), pp.
50
60
.
15.
Ziółkowski
,
P.
,
Kowalczyk
,
T.
,
Kornet
,
S.
, and
Badur
,
J.
,
2017
, “
On Low-Grade Waste Heat Utilization From a Supercritical Steam Power Plant Using an ORC-Bottoming Cycle Coupled With Two Sources of Heat
,”
Energy Convers. Manage.
,
146
(
15
), pp.
158
173
.
16.
Song
,
S.
,
Zhang
,
H.
,
Lou
,
Z.
,
Yang
,
F.
,
Yang
,
K.
,
Wang
,
H.
,
Bei
,
C.
,
Chang
,
Y.
, and
Yao
,
B.
,
2015
, “
Performance Analysis of Exhaust Waste Heat Recovery System for Stationary CNG Engine Based on Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
76
(
5
), pp.
301
309
.
17.
Rui
,
Z. H.
,
Wang
,
X. Q.
,
Zhang
,
Z. E.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X. Y.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
(
1
), pp.
76
91
.
18.
Razi
,
M.
,
Sinha
,
S.
,
Waghmare
,
P. R.
,
Das
,
S.
, and
Thundat
,
T.
,
2016
, “
Effect of Steam-Assisted Gravity Drainage Produced Water Properties on Oil/Water Transient Interfacial Tension
,”
Energy Fuels
,
30
(
12
), pp.
111
119
.
19.
Panwar
,
A.
, and
Nejadi
,
S.
,
2012
, “
Importance of Distributed Temperature Sensor (DTS) Placement for SAGD Reservoir Characterization and History Matching Within Ensemble Kalman Filter (EnKF) Framework
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), pp.
458
465
.
20.
Ma
,
Z.
,
Leung
,
J. Y.
, and
Zanon
,
S.
,
2017
, “
Practical Data Mining and Artificial Neural Network Modeling for Steam-Assisted Gravity Drainage Production Analysis
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032909
.
21.
Zhengbin
,
W.
,
Huiqing
,
L.
, and
Xue
,
W.
,
2017
, “
Adaptability Research of Thermal–Chemical Assisted Steam Injection in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052901
.
22.
Pillai
,
R. G.
,
Yang
,
N.
,
Thi
,
S.
,
Fatema
,
J.
,
Sadrzadeh
,
M.
, and
Pernitsky
,
D.
,
2017
, “
Characterization and Comparison of DOM Signatures in SAGD Process Water Samples From Athabasca Oil Sands
,”
Energy Fuels
,
31
(
8
), pp.
257
267
.
23.
Qin
,
C.
,
Becerra
,
M.
, and
Shaw
,
J. M.
,
2017
, “
The Fate of Organic Liquid Crystal Domains During SAGD/CSS Production of Heavy Oils and Bitumen
,”
Energy Fuels
,
31
(
5
), pp.
687
696
.
24.
Mohammadzadeh
,
O.
,
Rezaei
,
N.
, and
Chatzis
,
I.
,
2008
, “
Pore-Level Investigation of Heavy Oil and Bitumen Recovery Using Solvent—Aided Steam Assisted Gravity Drainage (SA-SAGD) Process
,”
Energy Fuels
,
24
(
12
), pp.
6327
6345
.
25.
Ashrafi
,
O.
,
Navarri
,
P.
,
Hughes
,
R.
, and
Lu
,
D.
,
2016
, “
Heat Recovery Optimization in a Steam-Assisted Gravity Drainage (SAGD) Plant
,”
Energy
,
111
(
15
), pp.
981
990
.
26.
Liu
,
L. J.
,
Liu
,
X. Y.
, and
Zhang
,
X. P.
,
2013
, “
Cascade Utilization of Waste Heat in Heavy Oil Exploitation by SAGD Technology
,”
Adv. Mater. Res.
,
734–737
, pp.
1150
1156
.
27.
Bowers, B.
,
Leblanc, N.
,
Jazayeri, S.
, and
Naini, A.
, 2008, “
A Model of a Combined Heat and Power System for SAGD Operations
,”
J. Can. Pet. Technol.
,
47
(1), pp. 18–21.
28.
Pan
,
Z.
,
Zhang
,
L.
,
Zhang
,
Z. E.
,
Shang
,
L. Y.
, and
Chen
,
S. J.
,
2018
, “
Thermodynamic Analysis of KCS/ORC Integrated Power Generation System With LNG Cold Energy Exploitation and CO2 Capture
,”
J. Nat. Gas Sci. Eng.
,
46
(
10
), pp.
188
198
.
29.
Aali
,
A.
,
Pourmahmoud
,
N.
, and
Zare
,
V.
,
2017
, “
Exergoeconomic Analysis and Multi-Objective Optimization of a Novel Combined Flash-Binary Cycle for Sabalan Geothermal Power Plant in Iran
,”
Energy Convers. Manage.
,
143
(
7
), pp.
377
390
.
30.
Bao
,
J.
,
Lin
,
Y.
,
Zhang
,
R.
,
Zhang
,
N.
, and
He
,
G.
,
2017
, “
Strengthening Power Generation Efficiency Utilizing Liquefied Natural Gas Cold Energy by a Novel Two-Stage Condensation Rankine Cycle (TCRC) System
,”
Energy Convers. Manage.
,
143
(
5
), pp.
312
325
.
31.
Dudek
,
M.
,
Kolenda
,
Z.
,
Jaszczur
,
M.
, and
Stanek
,
W.
,
2018
, “
Thermodynamic Analysis of Power Generation Cycles With High-Temperature Gas-Cooled Nuclear Reactor and Additional Coolant Heating Up to 1600 °C
,”
ASME J. Energy Resour. Technol.
,
140
(
2
), p.
020910
.
32.
Szega
,
M.
, and
Zymelka
,
P.
,
2017
, “
Thermodynamic and Economic Analysis of the Production of Electricity, Heat, and Cold in the Combined Heat and Power Unit With the Absorption Chillers
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052002
.
33.
Turton
,
R.
,
Bailie
,
R. C.
, and
Whiting
,
W. B.
,
2008
,
Analysis, Synthesis and Design of Chemical Processes
,
3rd ed.
,
Prentice Hall PTR
,
Upper Saddle River, NJ
, pp.
182
255
.
34.
Guthrie
,
K. M.
,
1969
,
Data and Techniques for Preliminary Capital Cost Estimating
(Chemical Engineering, Vol. 76),
McGraw-Hill
,
New York
, pp.
114
142
.
35.
Ulrich
,
G.
,
1984
,
A Guide to Chemical Engineering Process Design and Economics
,
Wiley
,
New York
.
36.
Mignard
,
D.
,
2014
, “
Correlating the Chemical Engineering Plant Cost Index With Macro-Economic Indicators
,”
Chem. Eng. Res. Des.
,
92
(
2
), pp.
285
294
.
37.
Akbari
,
A. D.
, and
Mahmoudi
,
S. M. S.
,
2014
, “
Thermoeconomic Analysis & Optimization of the Combined Supercritical CO2 (Carbon Dioxide) Recompression Brayton/Organic Rankine Cycle
,”
Energy
,
143
(
12
), pp.
501
512
.
38.
Hu
,
Y.
,
Hall
,
C. A. S.
,
Wang
,
J.
,
Feng
,
L.
, and
Poisson
,
A.
,
2013
, “
Energy Return on Investment (EROI) of China's Conventional Fossil Fuels: Historical and Future Trends
,”
Energy
,
54
(
1
), pp.
352
364
.
39.
Bassyouni
,
M.
,
Waheed
,
U. H. S.
,
Abdelaziz
,
M. H.
,
Abdelhamid
,
S. M. S.
,
Naveed
,
S.
,
Hussain
,
A.
, and
Ani
,
F. N.
,
2014
, “
Date Palm Waste Gasification in Downdraft Gasifier and Simulation Using ASPEN HYSYS
,”
Energy Convers. Manage.
,
88
(
12
), pp.
693
699
.
40.
Sunny
,
A.
,
Solomon
,
P. A.
, and
Aparna
,
K.
,
2016
, “
Syngas Production From Regasified Liquefied Natural Gas and Its Simulation Using Aspen HYSYS
,”
J. Nat. Gas Sci. Eng.
,
30
(
3
), pp.
176
181
.
You do not currently have access to this content.