Water vapor adsorption and desorption isotherms and kinetics studies on three Sichuan Basin shale samples were performed at 298 K by an accurate gravimetric method. The adsorption equilibrium data were fitted using both Dent model and Modified Dent model to estimate the adsorption characteristic of water on the primary and secondary sites. The primary site adsorption is restricted to a monolayer while the secondary site adsorption is associated with multilayer sorption. A positive correlation was found between clay mineral content and monolayer sorption content. The isosteric heats of sorption of water were determined from the equilibrium data and they decreased with the increase of adsorption amount. The adsorption/desorption hysteresis were studied with the pore structure. The kinetics of water vapor adsorption was studied with the unipore model and linear driving force mass transfer (LDF) model. The effective diffusivity and kinetic rate constant varied with the increase of relative pressure, which suggested diffusion of water vapor on shale corresponding to a combination of adsorption on primary sites, adsorption on secondary sites, formation of water clusters, and capillary condensation.

References

References
1.
Liu
,
F.
,
Ellett
,
K.
,
Xiao
,
Y.
, and
Rupp
,
J. A.
,
2013
, “
Assessing the Feasibility of CO2 Storage in the New Albany Shale (Devonian–Mississippian) With Potential Enhanced Gas Recovery Using Reservoir Simulation
,”
Int. J. Greenhouse Gas Control
,
17
, pp.
111
126
.
2.
Du
,
X. D.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2017
, “
The Influences of CO2 Injection Pressure on CO2 Dispersion and the Mechanism of CO2-CH4 Displacement in Shale
,”
ASME J. Energy Resour. Technol.
,
139
(1), p.
012909
.
3.
Du
,
X. D.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2018
, “
Investigation of CO2-CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
140
(1), p.
012907
.
4.
Yang
,
F.
,
Ning
,
Z. F.
,
Zhang
,
R.
,
Zhao
,
H.
, and
Krooss
,
B. M.
,
2015
, “
Investigations on the Methane Sorption Capacity of Marine Shales From Sichuan Basin, China
,”
Int. J. Coal Geol.
,
146
, pp.
104
117
.
5.
Luo
,
X.
,
Wang
,
S.
,
Wang
,
Z.
,
Jing
,
Z.
,
Lv
,
M.
,
Zhai
,
Z.
, and
Han
,
T.
,
2015
, “
Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale From the Qaidam Basin in China
,”
Int. J. Coal Geol.
,
150–151
, pp.
210
223
.
6.
Rexer
,
T. F. T.
,
Benham
,
M. J.
,
Aplin
,
A. C.
, and
Thomas
,
K. M.
,
2013
, “
Methane Adsorption on Shale Under Simulated Geological Temperature and Pressure Conditions
,”
Energy Fuels
,
27
(
6
), pp.
3099
3109
.
7.
Rexer
,
T. F.
,
Mathia
,
E. J.
,
Aplin
,
A. C.
, and
Thomas
,
K. M.
,
2014
, “
High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens
,”
Energy Fuels
,
28
(
5
), pp.
2886
2901
.
8.
Singh
,
H.
,
2016
, “
A Critical Review of Water Uptake by Shales
,”
J. Nat. Gas Sci. Eng.
,
34
, pp.
751
766
.
9.
Ahn
,
C. H.
,
Dimore
,
R.
, and
Wang
,
J.
,
2017
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three- Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
10.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
11.
Olabode
,
A.
, and
Radonjic
,
M.
,
2014
, “
Shale Caprock/Acidic Brine Interaction in Underground CO2 Storage
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042901
.
12.
Estrada
,
J. M.
, and
Bhamidimarri
,
R.
,
2016
, “
A Review of the Issues and Treatment Options for Wastewater From Shale Gas Extraction by Hydraulic Fracturing
,”
Fuel
,
182
, pp.
292
303
.
13.
Gasparik
,
M.
,
Bertier
,
P.
,
Gensterblum
,
Y.
,
Ghanizadeh
,
A.
,
Krooss
,
B. M.
, and
Littke
,
R.
,
2014
, “
Geological Controls on the Methane Storage Capacity in Organic-Rich Shales
,”
Int. J. Coal Geol.
,
123
, pp.
34
51
.
14.
Day
,
S.
,
Sakurovs
,
R.
, and
Weir
,
S.
,
2008
, “
Supercritical Gas Sorption on Moist Coals
,”
Int. J. Coal Geol.
,
74
(
3–4
), pp.
203
214
.
15.
Charriere
,
D.
, and
Behra
,
P.
,
2010
, “
Water Sorption on Coals
,”
J. Colloid Interface Sci.
,
344
(
2
), pp.
460
467
.
16.
Svabova
,
M.
,
Weishauptova
,
Z.
, and
Pribyl
,
O.
,
2011
, “
Water Vapour Adsorption on Coal
,”
Fuel
,
90
, pp.
1892
1899
.
17.
Foley
,
N. J.
,
Thomas
,
K. M.
,
Forshaw
,
P. L.
,
Stanton
,
D.
, and
Norman
,
P. R.
,
1997
, “
Kinetics of Water Vapor Adsorption on Activated Carbon
,”
Langmuir
,
13
(
7
), pp.
2083
2089
.
18.
Arisoy
,
A.
, and
Akgun
,
F.
,
1994
, “
Modelling of Spontaneous Combustion of Coal With Moisture Content Included
,”
Fuel
,
73
(
2
), pp.
281
286
.
19.
McCutcheon
,
A. L.
,
Barton
,
W. A.
, and
Wilson
,
M. A.
,
2003
, “
Characterization of Water Adsorbed on Bituminous Coals
,”
Energy Fuels
,
17
(
1
), pp.
107
112
.
20.
Martinez-Las
,
Heras
,
R.
,
Heredia
,
A.
,
Castello
,
M.
, and
Andres
,
L. A.
,
2014
, “
Moisture Sorption Isotherms and Isosteric Heat of Sorption of Dry Persimmon Leaves
,”
Food Biosci.
,
7
, pp.
88
94
.
21.
Serbezov
,
A.
,
2003
, “
Adsorption Equilibrium of Water Vapor on F-200 Activated Alumina
,”
J. Chem. Eng. Data
,
48
(
2
), pp.
421
425
.
22.
Harding
,
A. W.
,
Foley
,
N. J.
,
Norman
,
P. R.
,
Francis
,
D. C.
, and
Thomas
,
K. M.
,
1998
, “
Diffusion Barriers in the Kinetics of Water Vapor Adsorption/Desorption on Activated Carbons
,”
Langmuir
,
14
(
14
), pp.
3858
3864
.
23.
Guo
,
W.
,
Xiong
,
W.
,
Gao
,
S.
,
Hu
,
Z.
,
Liu
,
H.
, and
Yu
,
R.
,
2013
, “
Impact of Temperature on the Isothermal Adsorption/Desorption of Shale Gas
,”
Pet. Explor. Dev.
,
40
(
4
), pp.
514
519
.
24.
Rutherford
,
S. W.
, and
Coons
,
J. E.
,
2004
, “
Equilibrium and Kinetics of Water Adsorption in Carbon Molecular Sieve: Theory and Experiment
,”
Langmuir
,
20
(
20
), pp.
8681
8687
.
25.
McCutcheon
,
A. L.
,
Barton
,
W. A.
, and
Wilson
,
M. A.
,
2001
, “
Kinetics of Water Adsorption/Desorption on Bituminous Coals
,”
Energy Fuels
,
15
(
6
), pp.
1387
1395
.
26.
Gu
,
M.
,
Xian
,
X. F.
,
Duan
,
S.
, and
Du
,
X. D.
,
2017
, “
Influences of the Composition and Pore Structure of a Shale on Its Selective Adsorption of CO2 Over CH4
,”
J. Nat. Gas Sci. Eng.
,
46
, pp.
296
306
.
27.
Chen
,
Z. M.
,
Yong
,
Z. Q.
,
Zhu
,
J. P.
,
Ye
,
X. M.
,
Wang
,
H.
, and
Zhao
,
S.
,
2013
, “
Features of Wufeng Formation and Longmaxi Formation Shale in Nanchuan, Southeast of Sichuan, China
,”
J. Chengdu Univ. Technol. (Sci. Technol. Ed.)
,
40
(6), pp.
696
702
.
28.
Zou
,
C.
,
Dong
,
D.
,
Wang
,
S.
,
Li
,
J.
,
Li
,
X.
,
Wang
,
Y.
,
Li
,
D.
, and
Chen
,
K.
,
2010
, “
Geological Characteristics and Resource Potential of Shale Gas in China
,”
Pet. Explor. Dev.
,
37
(
6
), pp.
641
653
.
29.
Chalmers
,
G. E. L.
, and
Bustin
,
R. M.
,
2007
, “
The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada
,”
Int. J. Coal Geol.
,
70
(
1–3
), pp.
223
239
.
30.
McCallum
,
C. L.
,
Bandosz
,
T. J.
,
McGrother
,
S. C.
,
Müller
,
W. A.
, and
Gubbins
,
K. E.
,
1999
, “
Molecular Model for Adsorption of Water on Activated Carbon: Comparison of Simulation and Experiment
,”
Langmuir
,
15
(
2
), pp.
533
544
.
31.
Skaar
,
C.
,
1988
,
Woods Water Relations
,
Springer Verlag
,
Berlin
.
32.
Zou
,
L.
,
Gong
,
L.
,
Xu
,
P.
,
Feng
,
G.
, and
Liu
,
H.
,
2016
, “
Modified GAB Model for Correlating Multilayer Adsorption Equilibrium Data
,”
Sep. Purif. Technol.
,
161
, pp.
38
43
.
33.
Weishauptova
,
Z.
,
Pribyl
,
O.
,
Sykorova
,
I.
, and
Machovic
,
V.
,
2015
, “
Effect of Bituminous Coal Properties on Carbon Dioxide and Methane High Pressure Sorption
,”
Fuel
,
139
, pp.
115
124
.
34.
Kumar
,
S.
,
Prasad
,
M.
, and
Pini
,
R.
,
2015
, “
Selective Adsorptives to Study Pore Structure and Wetting Behavior of Self-Resourcing Shales
,”
SPWLA
56th Annual Logging Symposium,
Long Beach, CA, July 18–22, pp.
1
8
.https://www.onepetro.org/conference-paper/SPWLA-2015-EEE
35.
Whittaker
,
P. B.
,
Wang
,
X.
,
Regenauer-lieb
,
K.
, and
Chua
,
H. T.
,
2013
, “
Predicting Isosteric Heats for Gas Adsorption
,”
Phys. Chem. Chem. Phys.
,
15
(
2
), pp.
473
482
.
36.
Krishna
,
R.
,
2015
, “
Evaluation of Procedures for Estimation of the Isosteric Heat of Adsorption in Microporous Materials
,”
Chem. Eng. Sci.
,
123
, pp.
191
196
.
37.
Charriere
,
D.
,
Pokryszka
,
Z.
, and
Behra
,
P.
,
2010
, “
Effect of Pressure and Temperature on Diffusion of CO2 and CH4 Into Coal From the Lorraine Basin (France)
,”
Int. J. Coal Geol.
,
81
(
4
), pp.
373
380
.
38.
Yuan
,
W.
,
Pan
,
Z.
,
Li
,
X.
,
Yang
,
Y.
,
Zhao
,
C.
,
Connell
,
L. D.
,
Li
,
S.
, and
He
,
J.
,
2014
, “
Experimental Study and Modelling of Methane Adsorption and Diffusion in Shale
,”
Fuel
,
117
, pp.
509
519
.
39.
Zhai
,
Z.
,
Wang
,
X.
,
Jin
,
X.
,
Sun
,
L.
,
Li
,
J.
, and
Cao
,
D.
,
2014
, “
Adsorption and Diffusion of Shale Gas Reservoirs in Modeled Clay Minerals at Different Geological Depths
,”
Energy Fuels
,
28
(
12
), pp.
7467
7473
.
40.
Duan
,
S.
,
Gu
,
M.
,
Du
,
X. D.
, and
Xian
,
X. F.
,
2016
, “
Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale
,”
Energy Fuels
,
30
(
3
), pp.
2248
2256
.
41.
Charoensuppanimit
,
P.
,
Mohammad
,
S. A.
, and
Gasem
,
K. A. M.
,
2016
, “
Measurements and Modeling of Gas Adsorption on Shales
,”
Energy Fuels
,
30
(
3
), pp.
2309
2319
.
You do not currently have access to this content.