Biodiesel has emerged as a suitable alternative to mineral diesel in compression ignition (CI) engines in order to ensure global energy security and to reduce engine out emissions in near future. Biodiesel derived from various feedstocks available worldwide fits well in the current fuel supply arrangement for transport sector. However, biodiesel as an alternative transportation fuel has been extensively investigated because of differences in its important fuel properties compared with baseline mineral diesel. Since fuel properties greatly influence spray development, combustion, and emission formation in internal combustion (IC) engines, a number of experimental and computational studies on biodiesel usage in CI engines have been performed to determine its brake thermal efficiency (BTE), gaseous emissions, durability, etc., by various researchers using variety of engines and feedstocks. In the present paper, a critical review of the effect of biodiesel's fuel properties on engine performance, emissions, and combustion characteristics in existing diesel engines vis-a-vis conventional diesel has been undertaken. In addition, the progress and advances of numerical modeling involving biodiesel are also reviewed to determine the effect of fuel properties on spray evolution and development of reaction mechanisms for biodiesel combustion simulations. Fuel properties are discussed in two categories: physical and chemical properties, which are key parameters affecting spray and combustion processes. Subsequent sections review spray, combustion, emissions, and performance characteristics of biodiesels under various engine operation conditions. In the last section of this review paper, numerical modeling of biodiesel covering recent numerical models and schemes to understand the behavior of biodiesel combustion and pollutants formation is included. This review paper comprehensively summarizes biodiesel fuel's (BDFs) spray, combustion, and emission characteristics using experimental and numerical approaches. Limitations and scope for future studies are discussed in each section.

References

References
1.
Guo
,
Z.
,
Guo
,
H.
, and
Zeng
,
Q.
,
2018
, “
Investigation on Di-(2-Methoxypropyl) Carbonate Used as a Clean Oxygenated Fuel for Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012201
.
2.
Patil
,
V. V.
, and
Patil
,
R. S.
,
2018
, “
Investigations on Partial Addition of n-Butanol in Sunflower Oil Methyl Ester Powered Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012205
.
3.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
,
2018
, “
Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
.
4.
Yadav
,
J.
, and
Ramesh
,
A.
,
2018
, “
Comparison of Single and Multiple Injection Strategies in a Butanol Diesel Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072206
.
5.
Buliński
,
Z.
,
Szczygieł
,
I.
,
Kabaj
,
A.
,
Krysiński
,
T.
,
Gładysz
,
P.
,
Czarnowska
,
L.
, and
Stanek
,
W.
,
2018
, “
Performance Analysis of the Small-Scale α-Type Stirling Engine Using Computational Fluid Dynamics Tools
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032001
.
6.
Virsik
,
R.
,
Rinderknecht
,
F.
, and
Friedrich
,
H. E.
,
2018
, “
Free-Piston Linear Generator and the Development of a Solid Lubrication System
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032007
.
7.
Abo-Elfadl
,
S.
, and
Mohamed
,
A. A. E. S.
,
2018
, “
The Effect of the Helical Inlet Port Design and the Shrouded Inlet Valve Condition on Swirl Generation in Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032203
.
8.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2017
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
.
9.
Carlanescu
,
R.
,
Prisecaru
,
T.
,
Prisecaru
,
M.
, and
Soriga
,
I.
,
2018
, “
Swirl Injector for Premixed Combustion of Hydrogen–Methane Mixtures
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072002
.
10.
Singh
,
A. P.
,
Bajpai
,
N.
, and
Agarwal
,
A. K.
,
2018
, “
Combustion Mode Switching Characteristics of a Medium-Duty Engine Operated in Compression Ignition/PCCI Combustion Modes
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092201
.
11.
ASTM, 2012, “
Standard Specification for Diesel Fuel Oils
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
ASTM D975-12a
.
12.
ASTM, 2012, “
Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
ASTM D6751-15b
.
13.
Tat
,
M. E.
,
Van Gerpen
,
J. H.
,
Soylu
,
S.
,
Canakci
,
M.
,
Monyem
,
A.
, and
Wormley
,
S.
,
2000
, “
The Speed of Sound and Isentropic Bulk Modulus of Biodiesel at 21 °C from Atmospheric Pressure to 35 MPa
,”
J. Am. Oil Chem. Soc.
,
77
(
3
), pp.
285
289
.
14.
Martínez
,
G.
,
Sánchez
,
N.
,
Encinar
,
J. M.
, and
González
,
J. F.
,
2014
, “
Fuel Properties of Biodiesel From Vegetable Oils and Oil Mixtures. Influence of Methyl Esters Distribution
,”
Biomass Bioenergy
,
63
, pp.
22
32
.
15.
Giakoumis
,
E. G.
,
2013
, “
A Statistical Investigation of Biodiesel Physical and Chemical Properties, and Their Correlation With the Degree of Unsaturation
,”
Renewable Energy
,
50
, pp.
858
878
.
16.
Meher
,
L. C.
,
Kulkarni
,
M. G.
,
Dalai
,
A. K.
, and
Naik
,
S. N.
,
2006
, “
Transesterification of Karanja (Pongamia Pinnata) Oil by Solid Basic Catalysts
,”
Eur. J. Lipid Sci. Technol.
,
108
(
5
), pp.
389
397
.
17.
Kumar
,
M. S.
,
Ramesh
,
A.
, and
Nagalingam
,
B.
,
2003
, “
An Experimental Comparison of Methods to Use Methanol and Jatropha Oil in a Compression Ignition Engine
,”
Biomass Bioenergy
,
25
(
3
), pp.
309
318
.
18.
Pratas
,
M. J.
,
Freitas
,
S. V.
,
Oliveira
,
M. B.
,
Monteiro
,
S. C.
,
Lima
,
Á. S.
, and
Coutinho
,
J. A.
,
2011
, “
Biodiesel Density: Experimental Measurements and Prediction Models
,”
Energy Fuels
,
25
(
5
), pp.
2333
2340
.
19.
Baroutian
,
S.
,
Aroua
,
M. K.
,
Raman
,
A. A.
, and
Sulaiman
,
N. M. N.
,
2008
, “
Density of Palm Oil-Based Methyl Ester
,”
J. Chem. Eng. Data
,
53
(
3
), pp.
877
880
.
20.
Ivaniš
,
G. R.
,
Radović
,
I. R.
,
Veljković
,
V. B.
, and
Kijevčanin
,
M. L.
,
2016
, “
Biodiesel Density and Derived Thermodynamic Properties at High Pressures and Moderate Temperatures
,”
Fuel
,
165
, pp.
244
251
.
21.
Barabás
,
I.
,
2013
, “
Predicting the Temperature Dependent Density of Biodiesel–Diesel–Bioethanol Blends
,”
Fuel
,
109
, pp.
563
574
.
22.
Prieto
,
N. M.
,
Ferreira
,
A. G.
,
Portugal
,
A. T.
,
Moreira
,
R. J.
, and
Santos
,
J. B.
,
2015
, “
Correlation and Prediction of Biodiesel Density for Extended Ranges of Temperature and Pressure
,”
Fuel
,
141
, pp.
23
38
.
23.
Ramírez-Verduzco
,
L. F.
,
García-Flores
,
B. E.
,
Rodríguez-Rodríguez
,
J. E.
, and
del Rayo Jaramillo-Jacob
,
A.
,
2011
, “
Prediction of the Density and Viscosity in Biodiesel Blends at Various Temperatures
,”
Fuel
,
90
(
5
), pp.
1751
1761
.
24.
Ramírez Verduzco, L. F.
,
2013
, “
Density and Viscosity of Biodiesel as a Function of Temperature: Empirical Models
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
652
665
.
25.
Yoon
,
S. H.
,
Park
,
S. H.
, and
Lee
,
C. S.
,
2007
, “
Experimental Investigation on the Fuel Properties of Biodiesel and Its Blends at Various Temperatures
,”
Energy Fuels
,
22
(
1
), pp.
652
656
.
26.
Tate
,
R. E.
,
Watts
,
K. C.
,
Allen
,
C. A. W.
, and
Wilkie
,
K. I.
,
2006
, “
The Densities of Three Biodiesel Fuels at Temperatures Up to 300 C
,”
Fuel
,
85
(
7–8
), pp.
1004
1009
.
27.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Gupta
,
J. G.
,
Kim
,
W. I.
,
Lee
,
C. S.
, and
Park
,
S.
,
2014
, “
Effect of Fuel Injection Pressure and Injection Timing on Spray Characteristics and Particulate Size–Number Distribution in a Biodiesel Fuelled Common Rail Direct Injection Diesel Engine
,”
Appl. Energy
,
130
, pp.
212
221
.
28.
Freitas
,
S. V.
,
Segovia
,
J. J.
,
Martín
,
M. C.
,
Zambrano
,
J.
,
Oliveira
,
M. B.
,
Lima
,
Á. S.
, and
Coutinho
,
J. A.
,
2014
, “
Measurement and Prediction of High-Pressure Viscosities of Biodiesel Fuels
,”
Fuel
,
122
, pp.
223
228
.
29.
Shahabuddin
,
M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Bhuiya
,
M. M. K.
, and
Mofijur
,
M.
,
2012
, “
An Experimental investigation Into biodiesel Stability by Means of Oxidation and Property Determination
,”
Energy
,
44
(
1
), pp.
616
622
.
30.
Ramírez-Verduzco
,
L. F.
,
Rodríguez-Rodríguez
,
J. E.
, and
del Rayo Jaramillo-Jacob
,
A.
,
2012
, “
Predicting Cetane Number, Kinematic Viscosity, Density and Higher Heating Value of Biodiesel From Its Fatty Acid Methyl Ester Composition
,”
Fuel
,
91
(
1
), pp.
102
111
.
31.
Knothe
,
G.
,
2008
, “
Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties
,”
Energy Fuels
,
22
(
2
), pp.
1358
1364
.
32.
Saiban
,
S.
, and
Brown
,
T. C.
,
1997
, “
Kinetic Model for Cloud-Point Blending of Diesel Fuels
,”
Fuel
,
76
(
14–15
), pp.
1417
1423
.
33.
Knothe
,
G.
, and
Steidley
,
K. R.
,
2005
, “
Kinematic Viscosity of Biodiesel Fuel Components and Related Compounds. Influence of Compound Structure and Comparison to Petrodiesel Fuel Components
,”
Fuel
,
84
(
9
), pp.
1059
1065
.
34.
Ejim
,
C. E.
,
Fleck
,
B. A.
, and
Amirfazli
,
A.
,
2007
, “
Analytical Study for Atomization of Biodiesels and Their Blends in a Typical Injector: Surface Tension and Viscosity Effects
,”
Fuel
,
86
(
10–11
), pp.
1534
1544
.
35.
Ahmed
,
M. A.
,
Ejim
,
C. E.
,
Fleck
,
B. A.
, and
Amirfazli
,
A.
,
2006
, “
Effect of Biodiesel Fuel Properties and Its Blends on Atomization
,”
SAE
Technical Paper No. 2006-01-0893.
36.
Shu
,
Q.
,
Wang
,
J.
,
Peng
,
B.
,
Wang
,
D.
, and
Wang
,
G.
,
2008
, “
Predicting the Surface Tension of Biodiesel Fuels by a Mixture Topological Index Method, at 313 K
,”
Fuel
,
87
(
17–18
), pp.
3586
3590
.
37.
Pratas
,
M. J.
,
Freitas
,
S.
,
Oliveira
,
M. B.
,
Monteiro
,
S. C.
,
Lima
,
A. S.
, and
Coutinho
,
J. A.
,
2010
, “
Densities and Viscosities of Fatty Acid Methyl and Ethyl Esters
,”
J. Chem. Eng. Data
,
55
(
9
), pp.
3983
3990
.
38.
Davanlou
,
A.
,
Lee
,
J. D.
,
Basu
,
S.
, and
Kumar
,
R.
,
2015
, “
Effect of Viscosity and Surface Tension on Breakup and Coalescence of Bicomponent Sprays
,”
Chem. Eng. Sci.
,
131
, pp.
243
255
.
39.
Phankosol
,
S.
,
Sudaprasert
,
K.
,
Lilitchan
,
S.
,
Aryusuk
,
K.
, and
Krisnangkura
,
K.
,
2014
, “
Estimation of Surface Tension of Fatty Acid Methyl Ester and Biodiesel at Different Temperatures
,”
Fuel
,
126
, pp.
162
168
.
40.
Freitas
,
S. V.
,
Oliveira
,
M. B.
,
Queimada
,
A. J.
,
Pratas
,
M. J.
,
Lima
,
Á. S.
, and
Coutinho
,
J. A.
,
2011
, “
Measurement and Prediction of Biodiesel Surface Tensions
,”
Energy Fuels
,
25
(
10
), pp.
4811
4817
.
41.
Srivastava
,
A.
, and
Prasad
,
R.
,
2000
, “
Triglycerides-Based Diesel Fuels
,”
Renewable Sustainable Energy Rev.
,
4
(
2
), pp.
111
133
.
42.
Soriano
,
N. U.
, Jr
,
Migo
,
V. P.
, and
Matsumura
,
M.
,
2006
, “
Ozonized Vegetable Oil as Pour Point Depressant for Neat Biodiesel
,”
Fuel
,
85
(
1
), pp.
25
31
.
43.
Boog
,
J. H. F.
,
Silveira
,
E. L. C.
,
De Caland
,
L. B.
, and
Tubino
,
M.
,
2011
, “
Determining the Residual Alcohol in Biodiesel Through Its Flash Point
,”
Fuel
,
90
(
2
), pp.
905
907
.
44.
Graboski
,
M. S.
, and
McCormick
,
R. L.
,
1998
, “
Combustion of Fat and Vegetable Oil Derived Fuels in Diesel Engines
,”
Prog. Energy Combust. Sci.
,
24
(
2
), pp.
125
164
.
45.
Mejía
,
J. D.
,
Salgado
,
N.
, and
Orrego
,
C. E.
,
2013
, “
Effect of Blends of Diesel and Palm-Castor Biodiesels on Viscosity, Cloud Point and Flash Point
,”
Ind. Crops Prod.
,
43
, pp.
791
797
.
46.
Sarin
,
A.
,
Arora
,
R.
,
Singh
,
N. P.
,
Sarin
,
R.
,
Malhotra
,
R. K.
, and
Kundu
,
K.
,
2009
, “
Effect of Blends of Palm-Jatropha-Pongamia Biodiesels on Cloud Point and Pour Point
,”
Energy
,
34
(
11
), pp.
2016
2021
.
47.
Agarwal
,
A. K.
,
2007
, “
Biofuels (Alcohols and Biodiesel) Applications as Fuels for Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
33
(
3
), pp.
233
271
.
48.
Guo
,
Y.
,
Wei
,
H.
,
Yang
,
F.
,
Li
,
D.
,
Fang
,
W.
, and
Lin
,
R.
,
2009
, “
Study on Volatility and Flash Point of the Pseudo-Binary Mixtures of Sunflowerseed-Based Biodiesel+ Ethanol
,”
J. Hazardous Mater.
,
167
(
1–3
), pp.
625
629
.
49.
Alptekin
,
E.
, and
Canakci
,
M.
,
2008
, “
Determination of the Density and the Viscosities of Biodiesel–Diesel Fuel Blends
,”
Renewable Energy
,
33
(
12
), pp.
2623
2630
.
50.
Rashed
,
M. M.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Mofijur
,
M.
,
Rasul
,
M. G.
, and
Zulkifli
,
N. W. M.
,
2016
, “
Performance and Emission Characteristics of a Diesel Engine Fueled With Palm, Jatropha, and Moringa Oil Methyl Ester
,”
Ind. Crops Products
,
79
, pp.
70
76
.
51.
Tiwari
,
A. K.
,
Kumar
,
A.
, and
Raheman
,
H.
,
2007
, “
Biodiesel Production From Jatropha Oil (Jatropha Curcas) With High Free Fatty Acids: An Optimized Process
,”
Biomass Bioenergy
,
31
(
8
), pp.
569
575
.
52.
Agarwal
,
A. K.
, and
Dhar
,
A.
,
2013
, “
Experimental Investigations of Performance, Emission and Combustion Characteristics of Karanja Oil Blends Fuelled DICI Engine
,”
Renewable Energy
,
52
, pp.
283
291
.
53.
Lee
,
C. S.
,
Park
,
S. W.
, and
Kwon
,
S. I.
,
2005
, “
An Experimental Study on the Atomization and Combustion Characteristics of Biodiesel-Blended Fuels
,”
Energy Fuels
,
19
(
5
), pp.
2201
2208
.
54.
Mosarof
,
M. H.
,
Kalam
,
M. A.
,
Masjuki
,
H. H.
,
Alabdulkarem
,
A.
,
Habibullah
,
M.
,
Arslan
,
A.
, and
Monirul
,
I. M.
,
2016
, “
Assessment of Friction and Wear Characteristics of Calophyllum Inophyllum and Palm Biodiesel
,”
Ind. Crops Prod.
,
83
, pp.
470
483
.
55.
Tomic
,
M.
,
Savin
,
L.
,
Micic
,
R.
,
Simikic
,
M.
, and
Furman
,
T.
,
2014
, “
Possibility of Using Biodiesel From Sunflower Oil as an Additive for the Improvement of Lubrication Properties of Low-Sulfur Diesel Fuel
,”
Energy
,
65
, pp.
101
108
.
56.
Knothe
,
G.
, and
Steidley
,
K. R.
,
2005
, “
Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity
,”
Energ. Fuel.
,
19
(
3
), pp.
1192
1200
.
57.
Kinast
,
J. A.
,
2003
, “
Production of Biodiesels From Multiple Feedstocks and Properties of Biodiesels and Biodiesel/Diesel Blends: Final Report; Report 1 in a Series of 6
,” National Renewable Energy Lab., Golden, CO, Report No. NREL/SR-510-31460.
58.
Reddy
,
M. S.
,
Sharma
,
N.
, and
Agarwal
,
A. K.
,
2016
, “
Effect of Straight Vegetable Oil Blends and Biodiesel Blends on Wear of Mechanical Fuel Injection Equipment of a Constant Speed Diesel Engine
,”
Renewable Energy
,
99
, pp.
1008
1018
.
59.
Cook
,
S.
,
Barker
,
J.
,
Reid
,
J.
, and
Richards
,
P.
,
2012
, “
Possible Mechanism for Poor Diesel Fuel Lubricity in the Field
,”
SAE Int. J. Fuels Lubr.
,
5
(
2
), pp.
711
720
.
60.
Graboski
,
M. S.
,
McCormick
,
R. L.
,
Alleman
,
T. L.
, and
Herring
,
A. M.
,
2003
, “
The Effect of Biodiesel Composition on Engine Emissions From a DDC Series 60 Diesel Engine
,” National Renewable Energy Laboratory, Golden, CO, Final Report No.
NREL/SR-510-31461
.http://biodiesel.org/reports/20030201_gen-361.pdf
61.
Bechtold
,
R. L.
,
2002
, Alternative Fuels: Transportation Fuels for Today and Tomorrow,
SAE International
, Warrendale, USA., pp.
63
73
.
62.
Knothe
,
G.
,
Matheaus
,
A. C.
, and
Ryan
,
T. W.
, III
,
2003
, “
Cetane Numbers of Branched and Straight-Chain Fatty Esters Determined in an Ignition Quality Tester
,”
Fuel
,
82
(
8
), pp.
971
975
.
63.
Gülüm
,
M.
, and
Bilgin
,
A.
,
2015
, “
Density, Flash Point and Heating Value Variations of Corn Oil Biodiesel–Diesel Fuel Blends
,”
Fuel Process. Technol.
,
134
, pp.
456
464
.
64.
Lapuerta
,
M.
,
Armas
,
O.
, and
Rodriguez-Fernandez
,
J.
,
2008
, “
Effect of Biodiesel Fuels on Diesel Engine Emissions
,”
Prog. Energy Combust. Sci.
,
34
(
2
), pp.
198
223
.
65.
Lopes
,
S. M.
,
Furey
,
R.
, and
Geng
,
P.
,
2013
, “
Calculation of Heating Value for Diesel Fuels Containing Biodiesel
,”
SAE Int. J. Fuels Lubr.
,
6
(
2
), pp.
407
418
.
66.
Shehata
,
M. S.
,
Attia
,
A. M.
, and
Razek
,
S. A.
,
2015
, “
Corn and Soybean Biodiesel Blends as Alternative Fuels for Diesel Engine at Different Injection Pressures
,”
Fuel
,
161
, pp.
49
58
.
67.
Rathore
,
V.
,
Tyagi
,
S.
,
Newalkar
,
B.
, and
Badoni
,
R. P.
,
2015
, “
Jatropha and Karanja Oil Derived DMC–Biodiesel Synthesis: A Kinetics Study
,”
Fuel
,
140
, pp.
597
608
.
68.
Ali
,
O. M.
,
Mamat
,
R.
,
Abdullah
,
N. R.
, and
Abdullah
,
A. A.
,
2016
, “
Analysis of Blended Fuel Properties and Engine Performance With Palm Biodiesel–Diesel Blended Fuel
,”
Renewable Energy
,
86
, pp.
59
67
.
69.
Merlin
,
A. Z.
,
Marcel
,
O. A.
,
Louis Max, A. O.
,
Salem
,
C.
, and
Jean
,
G.
,
2015
, “
Development and Experimental Investigation of a Biodiesel From a Nonedible Woody Plant: The Neem
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
201
208
.
70.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Gupta
,
J. G.
,
Kim
,
W. I.
,
Choi
,
K.
,
Lee
,
C. S.
, and
Park
,
S.
,
2015
, “
Effect of Fuel Injection Pressure and Injection Timing of Karanja Biodiesel Blends on Fuel Spray, Engine Performance, Emissions and Combustion Characteristics
,”
Energy Convers. Manage.
,
91
, pp.
302
314
.
71.
Goodrum
,
J. W.
, and
Geller
,
D. P.
,
2005
, “
Influence of Fatty Acid Methyl Esters From Hydroxylated Vegetable Oils on Diesel Fuel Lubricity
,”
Bioresour. Technol.
,
96
(
7
), pp.
851
855
.
72.
Patel
,
C.
,
Lee
,
S.
,
Tiwari
,
N.
,
Agarwal
,
A. K.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Spray Characterization, Combustion, Noise and Vibrations Investigations of Jatropha Biodiesel Fuelled Genset Engine
,”
Fuel
,
185
, pp.
410
420
.
73.
Koo
,
J. Y.
, and
Martin
,
J. K.
,
1990
, “
Droplet Sizes and Velocities in a Transient Diesel Fuel Spray
,”
SAE Trans.
,
99
(3), pp.
929
947
.https://www.jstor.org/stable/44548552
74.
Jiotode
,
Y.
, and
Agarwal
,
A. K.
,
2016
, “
In-Cylinder Combustion Visualization of Jatropha Straight Vegetable Oil and Mineral Diesel Using High Temperature Industrial Endoscopy for Spatial Temperature and Soot Distribution
,”
Fuel Process. Technol.
,
153
, pp.
9
18
.
75.
Gopinath
,
A.
,
Puhan
,
S.
, and
Nagarajan
,
G.
,
2009
, “
Theoretical Modeling of Iodine Value and Saponification Value of Biodiesel Fuels From Their Fatty Acid Composition
,”
Renewable Energy
,
34
(
7
), pp.
1806
1811
.
76.
Benjumea
,
P.
,
Agudelo
,
J.
, and
Agudelo
,
A.
,
2008
, “
Basic Properties of Palm Oil Biodiesel–Diesel Blends
,”
Fuel
,
87
(
10–11
), pp.
2069
2075
.
77.
Patel
,
C.
,
Agarwal
,
A. K.
,
Tiwari
,
N.
,
Lee
,
S.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Combustion, Noise, Vibrations and Spray Characterization for Karanja Biodiesel Fuelled Engine
,”
Appl. Therm. Eng.
,
106
, pp.
506
517
.
78.
Guido
,
C.
,
Beatrice
,
C.
,
D.
,
Iorio
,
S.
,
Napolitano
,
P.
,
Di
,
Blasio
,
G.
,
Vassallo
,
A.
, and
Ciaravino
,
C.
,
2011
, “
Assessment of Closed-Loop Combustion Control Capability for Biodiesel Blending Detection and Combustion Impact Mitigation for an Euro5 Automotive Diesel Engine
,”
SAE
Paper No. 2011-01-1193.
79.
Knothe
,
G.
,
2009
, “
Improving Biodiesel Fuel Properties by Modifying Fatty Ester Composition
,”
Energy Environ. Sci.
,
2
(
7
), pp.
759
766
.
80.
Zuleta
,
E. C.
,
Baena
,
L.
,
Rios
,
L. A.
, and
Calderón
,
J. A.
,
2012
, “
The Oxidative Stability of Biodiesel and Its Impact on the Deterioration of Metallic and Polymeric Materials: A Review
,”
J. Braz. Chem. Soc.
,
23
(
12
), pp.
2159
2175
.
81.
Agarwal
,
A. K.
, and
Khurana
,
D.
,
2013
, “
Long-Term Storage Oxidation Stability of Karanja Biodiesel With the Use of Antioxidants
,”
Fuel Process. Technol.
,
106
, pp.
447
452
.
82.
Marčič
,
M.
,
1999
, “
A New Method for Measuring Fuel-Injection Rate
,”
Flow Meas. Instrum.
,
10
(
3
), pp.
159
165
.
83.
Moser
,
B. R.
,
2016
, “
Fuel Property Enhancement of Biodiesel Fuels From Common and Alternative Feedstocks Via Complementary Blending
,”
Renewable Energy
,
85
, pp.
819
825
.
84.
Zhao
,
H.
,
2009
,
Advanced Direct Injection Combustion Engine Technologies and Development: Diesel Engines
, Vol.
2
,
Elsevier
, Cambridge, UK.
85.
Park
,
S. H.
,
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
A Study on the Fuel Injection and Atomization Characteristics of Soybean Oil Methyl Ester (SME)
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
108
116
.
86.
Marčič
,
M.
,
2002
, “
Deformational Injection Rate Measuring Method
,”
Rev. Sci. Instrum.
,
73
(
9
), pp.
3373
3377
.
87.
Postrioti
,
L.
,
Mariani
,
F.
, and
Battistoni
,
M.
,
2012
, “
Experimental and Numerical Momentum Flux Evaluation of High Pressure Diesel Spray
,”
Fuel
,
98
, pp.
149
163
.
88.
Arcoumanis
,
C.
,
Baniasad
,
M. S.
, and
Banias
,
M. S.
,
1993
, “
Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods
,”
SAE Trans.
,
102
(3), pp.
1371
1384
.https://www.jstor.org/stable/44611469
89.
Tinprabath
,
P.
,
Hespel
,
C.
,
Chanchaona
,
S.
, and
Foucher
,
F.
,
2015
, “
Influence of Biodiesel and Diesel Fuel Blends on the Injection Rate Under Cold Conditions
,”
Fuel
,
144
, pp.
80
89
.
90.
Moon
,
S.
,
Tsujimura
,
T.
,
Gao
,
Y.
,
Park
,
S.
,
Wang
,
J.
,
Kurimoto
,
N.
,
Nishijima
,
Y.
, and
Oguma
,
M.
,
2014
, “
Biodiesel Effects on Transient Needle Motion and Near-Exit Flow Characteristics of a High-Pressure Diesel Injector
,”
Int. J. Engine Res.
,
15
(
4
), pp.
504
518
.
91.
Doudou
,
A.
, and
Maslouhi
,
A.
,
2007
, “
A Macro-Microscopic Investigation of High-Pressure Sprays Injected by a Common Rail System
,”
J. Mech. Sci. Technol.
,
21
(
8
), pp.
1284
1292
.
92.
Pickett
,
L. M.
,
Kook
,
S.
, and
Williams
,
T. C.
,
2009
, “
Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging
,”
SAE Int. J. Engines
,
2
(
1
), pp.
439
459
.
93.
Genzale
,
C. L.
,
Pickett
,
L. M.
, and
Kook
,
S.
,
2010
, “
Liquid Penetration of Diesel and Biodiesel Sprays at Late-Cycle Post-Injection Conditions
,”
SAE Int. J. Engines
,
3
(
1
), pp.
479
495
.
94.
Kostas
,
J.
,
Honnery
,
D.
,
Soria
,
J.
,
Kastengren
,
A.
,
Liu
,
Z.
,
Powell
,
C. F.
, and
Wang
,
J.
,
2009
, “
Effect of Nozzle Transients and Compressibility on the Penetration of Fuel Sprays
,”
Appl. Phys. Lett.
,
95
(
2
), p.
024101
.
95.
Agarwal
,
A. K.
,
Som
,
S.
,
Shukla
,
P. C.
,
Goyal
,
H.
, and
Longman
,
D.
,
2015
, “
In-Nozzle Flow and Spray Characteristics for Mineral Diesel, Karanja, and Jatropha Biodiesels
,”
Appl. Energy
,
156
, pp.
138
148
.
96.
Chong
,
C. T.
, and
Hochgreb
,
S.
,
2015
, “
Spray and Combustion Characteristics of Biodiesel: Non-Reacting and Reacting
,”
Int. Biodeterior. Biodegrad.
,
102
, pp.
353
360
.
97.
Mohan
,
B.
,
Yang
,
W.
,
Tay
,
K. L.
, and
Yu
,
W.
,
2014
, “
Experimental Study of Spray Characteristics of Biodiesel Derived From Waste Cooking Oil
,”
Energy Convers. Manage.
,
88
, pp.
622
632
.
98.
Kuti
,
O. A.
,
Nishida
,
K.
, and
Zhu
,
J.
,
2013
, “
Experimental Studies on Spray and Gas Entrainment Characteristics of Biodiesel Fuel: Implications of Gas Entrained and Fuel Oxygen Content on Soot Formation
,”
Energy
,
57
, pp.
434
442
.
99.
Liu
,
H.
,
Huo
,
M.
,
Liu
,
Y.
,
Wang
,
X.
,
Wang
,
H.
,
Yao
,
M.
, and
Chia-fon
,
F. L.
,
2014
, “
Time-Resolved Spray, Flame, Soot Quantitative Measurement Fueling n-Butanol and Soybean Biodiesel in a Constant Volume Chamber Under Various Ambient Temperatures
,”
Fuel
,
133
, pp.
317
325
.
100.
Hong
,
C. H.
,
Choi
,
W.
,
Choi
,
B.
, and
Lee
,
G.
,
2003
, “
Characteristics of High Pressure Bio-Diesel Fuel Spray
,”
Trans. KSAE
,
11
(
2
), pp.
56
62
.
101.
Tinprabath
,
P.
,
Hespel
,
C.
,
Chanchaona
,
S.
, and
Foucher
,
F.
,
2016
, “
Impact of Cold Conditions on Diesel Injection Processes of Biodiesel Blends
,”
Renewable Energy
,
96
, pp.
270
280
.
102.
Mo
,
J.
,
Tang
,
C.
,
Li
,
J.
,
Guan
,
L.
, and
Huang
,
Z.
,
2016
, “
Experimental Investigation on the Effect of n-Butanol Blending on Spray Characteristics of Soybean Biodiesel in a Common-Rail Fuel Injection System
,”
Fuel
,
182
, pp.
391
401
.
103.
Bayvel
,
L. P.
,
1993
,
Liquid Atomization
, Taylor & Francis, Washington, DC.
104.
Park
,
S. H.
,
Kim
,
H. J.
,
Suh
,
H. K.
, and
Lee
,
C. S.
,
2009
, “
Experimental and Numerical Analysis of Spray-[Atomization Characteristics of Biodiesel Fuel in Various Fuel and Ambient Temperatures Conditions
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
960
970
.
105.
Manin
,
J.
,
Bardi
,
M.
,
Pickett
,
L. M.
,
Dahms
,
R. N.
, and
Oefelein
,
J. C.
,
2014
, “
Microscopic Investigation of the Atomization and Mixing Processes of Diesel Sprays Injected Into High Pressure and Temperature Environments
,”
Fuel
,
134
, pp.
531
543
.
106.
Anantharaman
,
G.
,
Krishnamurthy
,
S.
, and
Ramalingam
,
V.
,
2013
, “
A Review on Combustion, Performance, and Emission Characteristics of Fuels Derived From Oil Seed Crops (Biodiesels)
,”
Aust. J. Crop Sci.
,
7
(
9
), pp. 1350–1354.http://www.cropj.com/sariam3740_7_9_2013_1350_1354.pdf
107.
Tesfa
,
B.
,
Mishra
,
R.
,
Zhang
,
C.
,
Gu
,
F.
, and
Ball
,
A. D.
,
2013
, “
Combustion and Performance Characteristics of CI (Compression Ignition) Engine Running With Biodiesel
,”
Energy
,
51
, pp.
101
115
.
108.
Gopal
,
K. N.
,
Pal
,
A.
,
Sharma
,
S.
,
Samanchi
,
C.
,
Sathyanarayanan
,
K.
, and
Elango
,
T.
,
2014
, “
Investigation of Emissions and Combustion Characteristics of a CI Engine Fueled With Waste Cooking Oil Methyl Ester and Diesel Blends
,”
Alexandria Eng. J.
,
53
(
2
), pp.
281
287
.
109.
Gopal
,
K. N.
, and
Karupparaj
,
R. T.
,
2014
, “
Effect of Pongamia Biodiesel on Emission and Combustion Characteristics of DI Compression Ignition Engine
,”
Ain Shams Eng. J.
,
6
(
1
), pp.
297
305
.
110.
Lin
,
B. F.
,
Huang
,
J. H.
, and
Huang
,
D. Y.
,
2009
, “
Experimental Study of the Effects of Vegetable Oil Methyl Ester on DI Diesel Engine Performance Characteristics and Pollutant Emissions
,”
Fuel
,
88
(
9
), pp.
1779
1785
.
111.
Lahane
,
S.
, and
Subramanian
,
K. A.
,
2015
, “
Effect of Different Percentages of Biodiesel–Diesel Blends on Injection, Spray, Combustion, Performance, and Emission Characteristics of a Diesel Engine
,”
Fuel
,
139
, pp.
537
545
.
112.
Sinha
,
S.
, and
Agarwal
,
A. K.
,
2007
, “
Experimental Investigation of the Combustion Characteristics of a Biodiesel (Rice-Bran Oil Methyl Ester)-Fuelled Direct-Injection Transportation Diesel Engine
,”
Proc. Inst. Mech. Eng., Part D
,
221
(
8
), pp.
921
932
.
113.
Agarwal
,
A. K.
,
Agarwal
,
A.
, and
Singh
,
A. P.
,
2015
, “
Time Resolved in-Situ Biodiesel Combustion Visualization Using Engine Endoscopy
,”
Measurement
,
69
, pp.
236
249
.
114.
Agarwal
,
A. K.
,
Singh
,
A. P.
,
Agarwal
,
A.
,
Jeon
,
J.
,
Lee
,
C. S.
, and
Park
,
S.
,
2016
, “
Spatial Combustion Analysis of Biodiesel Fueled Engine Using Combustion Chamber Endoscopy and Modelling
,”
Renewable Energy
,
98
, pp.
292
303
.
115.
Yoon
,
S. K.
,
Kim
,
M. S.
,
Kim
,
H. J.
, and
Choi
,
N. J.
,
2014
, “
Effects of Canola Oil Biodiesel Fuel Blends on Combustion, Performance, and Emissions Reduction in a Common Rail Diesel Engine
,”
Energies
,
7
(
12
), pp.
8132
8149
.
116.
Sathiyagnanam
,
A. P.
, and
Saravanan
,
C. G.
,
2011
, “
Experimental Studies on the Combustion Characteristics and Performance of a Direct Injection Engine Fueled With Biodiesel/Diesel Blends With SCR
,” World Congress on Engineering (
WCE
), July 6–8, London, pp. 1–6.https://pdfs.semanticscholar.org/adec/16eed1294a709b1ea503e6c199f9aa731986.pdf
117.
Labeckas
,
G.
,
Slavinskas
,
S.
, and
Mažeika
,
M.
,
2014
, “
The Effect of Ethanol–Diesel–Biodiesel Blends on Combustion, Performance and Emissions of a Direct Injection Diesel Engine
,”
Energy Convers. Manage.
,
79
, pp.
698
720
.
118.
How
,
H. G.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
, and
Teoh
,
Y. H.
,
2014
, “
Engine Performance, Emission and Combustion Characteristics of a Common-Rail Diesel Engine Fuelled With Bioethanol as a Fuel Additive in Coconut Oil Biodiesel Blends
,”
Energy Procedia
,
61
, pp.
1655
1659
.
119.
Dhar
,
A.
, and
Agarwal
,
A. K.
,
2015
, “
Experimental Investigations of the Effect of Pilot Injection on Performance, Emissions and Combustion Characteristics of Karanja Biodiesel Fuelled CRDI Engine
,”
Energy Convers. Manage.
,
93
, pp.
357
366
.
120.
Nalgundwar
,
A.
,
Paul
,
B.
, and
Sharma
,
S. K.
,
2016
, “
Comparison of Performance and Emissions Characteristics of DI CI Engine Fueled With Dual Biodiesel Blends of Palm and Jatropha
,”
Fuel
,
173
, pp.
172
179
.
121.
Liaquat
,
A. M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Fattah
,
I. R.
,
Hazrat
,
M. A.
,
Varman
,
M.
,
Mofijur
,
M.
, and
Shahabuddin
,
M.
,
2013
, “
Effect of Coconut Biodiesel Blended Fuels on Engine Performance and Emission Characteristics
,”
Procedia Eng.
,
56
, pp.
583
590
.
122.
Rajaraman
,
S.
,
Yashwanth
,
G. K.
,
Rajan
,
T.
,
Kumaran
,
R. T.
, and
Raghu
,
P.
,
2009
, “
Experimental Investigations of Performance and Characteristics Emission Characteristics of Moringa Oil Methyl Ester and Its Diesel Blends in a Single Cylinder Direct Injection Diesel Engine
,”
ASME
Paper No. IMECE2009-11265.
123.
Mofijur
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Atabani
,
A. E.
,
Arbab
,
M. I.
,
Cheng
,
S. F.
, and
Gouk
,
S. W.
,
2014
, “
Properties and Use of Moringa Oleifera Biodiesel and Diesel Fuel Blends in a Multi-Cylinder Diesel Engine
,”
Energy Convers. Manage.
,
82
, pp.
169
176
.
124.
Rahman
,
M. M.
,
Hassan
,
M. H.
,
Kalam
,
M. A.
,
Atabani
,
A. E.
,
Memon
,
L. A.
, and
Rahman
,
S. A.
,
2014
, “
Performance and Emission Analysis of Jatropha Curcas and Moringa Oleifera Methyl Ester Fuel Blends in a Multi-Cylinder Diesel Engine
,”
J. Cleaner Prod.
,
65
, pp.
304
310
.
125.
Mofijur
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Atabani
,
A. E.
,
Fattah
,
I. R.
, and
Mobarak
,
H. M.
,
2014
, “
Comparative Evaluation of Performance and Emission Characteristics of Moringa Oleifera and Palm Oil Based Biodiesel in a Diesel Engine
,”
Ind. Crops Prod.
,
53
, pp.
78
84
.
126.
Al Dawody
,
M. F.
, and
Bhatti
,
S. K.
,
2014
, “
Experimental and Computational Investigations for Combustion, Performance and Emission Parameters of a Diesel Engine Fueled With Soybean Biodiesel-Diesel Blends
,”
Energy Procedia
,
52
, pp.
421
430
.
127.
Gautam
,
A.
, and
Agarwal
,
A. K.
,
2013
, “
Experimental Investigations of Comparative Performance, Emission and Combustion Characteristics of a Cottonseed Biodiesel-Fueled Four-Stroke Locomotive Diesel Engine
,”
Int. J. Engine Res.
,
14
(
4
), pp.
354
372
.
128.
Dhar
,
A.
, and
Agarwal
,
A. K.
,
2014
, “
Performance, Emissions and Combustion Characteristics of Karanja Biodiesel in a Transportation Engine
,”
Fuel
,
119
, pp.
70
80
.
129.
Tüccar
,
G.
,
Tosun
,
E.
,
Özgür
,
T.
, and
Aydın
,
K.
,
2014
, “
Diesel Engine Emissions and Performance From Blends of Citrus Sinensis Biodiesel and Diesel Fuel
,”
Fuel
,
132
, pp.
7
11
.
130.
Azad
,
A. K.
,
Rasul
,
M. G.
,
Khan
,
M. M. K.
,
Sharma
,
S. C.
, and
Islam
,
R.
,
2015
, “
Prospect of Moringa Seed [Oil as a Sustainable Biodiesel Fuel in Australia: A Review
,”
Procedia Eng.
,
105
, pp.
601
606
.
131.
Tüccar
,
G.
,
Özgür
,
T.
, and
Aydın
,
K.
,
2014
, “
Effect of Diesel–Microalgae Biodiesel–Butanol Blends on Performance and Emissions of Diesel Engine
,”
Fuel
,
132
, pp.
47
52
.
132.
Imdadul
,
H. K.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Zulkifli
,
N. W. M.
,
Alabdulkarem
,
A.
,
Rashed
,
M. M.
,
Teoh
,
Y. H.
, and
How
,
H. G.
,
2016
, “
Higher Alcohol–Biodiesel–Diesel Blends: An Approach for Improving the Performance, Emission, and Combustion of a Light-Duty Diesel Engine
,”
Energy Convers. Manage.
,
111
, pp.
174
185
.
133.
Prabu
,
A.
,
2018
, “
Engine Characteristic Studies by Application of Antioxidants and Nanoparticles as Additives in Biodiesel Diesel Blends
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082203
.
134.
Wood
,
B. M.
,
Kirwan
,
K.
,
Maggs
,
S.
,
Meredith
,
J.
, and
Coles
,
S. R.
,
2015
, “
Study of Combustion Performance of Biodiesel for Potential Application in Motorsport
,”
J. Cleaner Prod.
,
93
, pp.
167
173
.
135.
Dhar
,
A.
,
Kevin
,
R.
, and
Agarwal
,
A. K.
,
2012
, “
Production of Biodiesel From High-FFA Neem Oil and Its Performance, Emission and Combustion Characterization in a Single Cylinder DICI Engine
,”
Fuel Process. Technol.
,
97
, pp.
118
129
.
136.
Paul
,
G.
,
Datta
,
A.
, and
Mandal
,
B. K.
,
2014
, “
An Experimental and Numerical Investigation of the Performance, Combustion and Emission Characteristics of a Diesel Engine Fueled With Jatropha Biodiesel
,”
Energy Procedia
,
54
, pp.
455
467
.
137.
Prakash
,
R.
,
Singh
,
R. K.
, and
Murugan
,
S.
,
2015
, “
Experimental Studies on Combustion, Performance and Emission Characteristics of Diesel Engine Using Different Biodiesel Bio Oil Emulsions
,”
J. Energy Inst.
,
88
(
1
), pp.
64
75
.
138.
Roy
,
M. M.
,
Wang
,
W.
, and
Alawi
,
M.
,
2014
, “
Performance and Emissions of a Diesel Engine Fueled by Biodiesel–Diesel, Biodiesel–Diesel-Additive and Kerosene–Biodiesel Blends
,”
Energy Convers. Manage.
,
84
, pp.
164
173
.
139.
Can
,
Ö.
,
2014
, “
Combustion Characteristics, Performance and Exhaust Emissions of a Diesel Engine Fueled With a Waste Cooking Oil Biodiesel Mixture
,”
Energy Convers. Manage.
,
87
, pp.
676
686
.
140.
Yilmaz
,
N.
,
2012
, “
Comparative Analysis of Biodiesel–Ethanol–Diesel and Biodiesel–Methanol–Diesel Blends in a Diesel Engine
,”
Energy
,
40
(
1
), pp.
210
213
.
141.
Yasin
,
M. H. M.
,
Mamat
,
R.
,
Yusop
,
A. F.
,
Aziz
,
A.
, and
Najafi
,
G.
,
2015
, “
Comparative Study on Biodiesel-Methanol-Diesel Low Proportion Blends Operating With a Diesel Engine
,”
Energy Procedia
,
75
, pp.
10
16
.
142.
Yilmaz
,
N.
,
Vigil
,
F. M.
,
Benalil
,
K.
,
Davis
,
S. M.
, and
Calva
,
A.
,
2014
, “
Effect of Biodiesel–Butanol Fuel Blends on Emissions and Performance Characteristics of a Diesel Engine
,”
Fuel
,
135
, pp.
46
50
.
143.
Balamurugan
,
T.
, and
Nalini
,
R.
,
2014
, “
Effect of Blending Alcohol With Diesel on Performance, Combustion and Emission Characteristics of Four Stroke Diesel Engine-an Experimental Study
,”
Int. J. ChemTech Res.
,
6
(
1
), pp.
750
762
.http://sphinxsai.com/2014/ChemTech/JM14CT51_100/CT=85(750-762)JM14.pdf
144.
Fang
,
Q.
,
Fang
,
J.
,
Zhuang
,
J.
, and
Huang
,
Z.
,
2013
, “
Effects of Ethanol–Diesel–Biodiesel Blends on Combustion and Emissions in Premixed Low Temperature Combustion
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
541
548
.
145.
Zhang
,
Z.-H.
, and
Balasubramanian
,
R.
,
2014
, “
Influence of Butanol Addition to Diesel–Biodiesel Blend on Engine Performance and Particulate Emissions of a Stationary Diesel Engine
,”
Appl. Energy
,
119
, pp.
530
536
.
146.
Nayak
,
S. K.
, and
Pattanaik
,
B. P.
,
2014
, “
Experimental Investigation on Performance and Emission Characteristics of a Diesel Engine Fuelled With Mahua Biodiesel Using Additive
,”
Energy Procedia
,
54
, pp.
569
579
.
147.
Can
,
Ö.
,
Öztürk
,
E.
,
Solmaz
,
H.
,
Aksoy
,
F.
,
Çinar
,
C.
, and
Yücesu
,
H. S.
,
2016
, “
Combined Effects of Soybean Biodiesel Fuel Addition and EGR Application on the Combustion and Exhaust Emissions in a Diesel Engine
,”
Appl. Therm. Eng.
,
95
, pp.
115
124
.
148.
O.
,
Mofijur
,
M.
,
Rasul
,
M.
G.
, and
Hyde
,
J.
,
2015
, “
Recent Developments on Internal Combustion Engine Performance and Emissions Fuelled With Biodiesel-Diesel-Ethanol Blends
,”
Procedia Eng.
,
105
, pp.
658
664
.
149.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2018
, “
Evaluation of Fuel Injection Strategies for Biodiesel-Fueled CRDI Engine Development and Particulate Studies
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102201
.
150.
Kittelson
,
D. B.
,
1998
, “
Engines and Nanoparticles: A Review
,”
J. Aerosol. Sci.
,
29
(
5–6
), pp.
575
588
.
151.
Dusek
,
U.
, and
Amann
,
M.
,
2000
, “
Secondary Organic Aerosol–Formation Mechanisms and Source Contributions in Europe
,” International Institute for Applied Systems Analysis, Laxenburg, Austria, Report No.
IR-00-066
.http://pure.iiasa.ac.at/id/eprint/6180/
152.
Kawano
,
D.
,
Ishii
,
H.
,
Goto
,
Y.
,
Noda
,
A.
, and
Aoyagi
,
Y.
,
2006
, “
Application of Biodiesel Fuel to Modern Diesel Engine
,”
SAE
Technical Paper No. 2006-01-0233.
153.
Hare
,
C. T.
,
Springer
,
K. J.
, and
Bradow
,
R. L.
,
1976
, “
Fuel and Additive Effects on Diesel Particulate—Development and Demonstration of Methodology
,”
SAE Trans.
,
85
(
1
), pp.
527
555
.https://www.jstor.org/stable/44644057
154.
Müller
,
J. O.
,
Su
,
D. S.
,
Jentoft
,
R. E.
,
Wild
,
U.
, and
Schlögl
,
R.
,
2006
, “
Diesel Engine Exhaust Emission: Oxidative Behavior and Microstructure of Black Smoke Soot Particulate
,”
Environ. Sci. Technol.
,
40
(
4
), pp.
1231
1236
.
155.
Funkenbusch
,
E. F.
,
Leddy
,
D. G.
, and
Johnson
,
J. H.
,
1979
, “
The Characterization of the Soluble Organic Fraction of Diesel Particulate Matter
,”
SAE Trans.
,
88
(2), pp. 1540–1560.https://www.jstor.org/stable/44658164
156.
Johnson
,
J. E.
, and
Kittelson
,
D. B.
,
1994
, “
Physical Factors Affecting Hydrocarbon Oxidation in a Diesel Oxidation Catalyst
,”
SAE Trans.
,
103
(3), pp. 1818–1835.https://www.jstor.org/stable/44632918
157.
Waldenmaier
,
D. A.
,
Gratz
,
L. D.
,
Bagley
,
S. T.
,
Johnson
,
J. H.
, and
Leddy
,
D. G.
,
1990
, “
The Influence of Sampling Conditions on the Repeatability of Diesel Particulate and Vapor Phase Hydrocarbon and PAH Measurements
,”
SAE Trans. Journal of Engines
,
99
(3), pp.
1431
1448
.https://www.jstor.org/stable/44548164
158.
Phuleria
,
H. C.
,
Geller
,
M. D.
,
Fine
,
P. M.
, and
Sioutas
,
C.
,
2006
, “
Size-Resolved Emissions of Organic Tracers From Light-and Heavy-Duty Vehicles Measured in a California Roadway Tunnel
,”
Environ. Sci. Technol.
,
40
(
13
), pp.
4109
4118
.
159.
Eastwood
,
P.
,
2008
,
Particulate Emissions From Vehicles
, John Wiley & Sons, West Sussex, England.
160.
Nwafor
,
O. M. I.
, and
Rice
,
G.
,
1995
, “
Performance of Rapeseed Methyl Ester in Diesel Engine
,”
Renewable Energy
,
6
(
3
), pp.
335
342
.
161.
Singh
,
S. K.
,
Agarwal
,
A. K.
, and
Sharma
,
M.
,
2006
, “
Experimental Investigations of Heavy Metal Addition in Lubricating Oil and Soot Deposition in an EGR Operated Engine
,”
Appl. Therm. Eng.
,
26
(
2–3
), pp.
259
266
.
162.
Arana
,
C. P.
,
Pontoni
,
M.
,
Sen
,
S.
, and
Puri
,
I. K.
,
2004
, “
Field Measurements of Soot Volume Fractions in Laminar Partially Premixed Coflow Ethylene/Air Flames
,”
Combust. Flame
,
138
(
4
), pp.
362
372
.
163.
Rhead
,
M. N.
,
Trier
,
C. J.
, and
Petch
,
G. S.
,
1990
, “
The Development of a Radiolabelling Technique to Unequivocally Determine the Products of Combustion From Specific Components of Diesel Fuel
,”
Fuels Automot. Diesel Engines
, pp.
19
20
.
164.
Martinot
,
S.
,
Beard
,
P.
,
Roesler
,
J.
, and
Garo
,
A.
,
2002
, “
Comparison and Coupling of Homogeneous Reactor and Flamelet Library Soot Modeling Approaches for Diesel Combustion
,”
SAE
Paper No. 2001-01-3684.
165.
D'anna
,
A.
, and
D'Alessio
,
A.
,
2000
, “
Modeling the Rich Combustion of Aliphatic Hydrocarbons
,”
Combust. Flame
,
121
(
3
), pp.
418
429
.
166.
Curran
,
H. J.
,
Fisher
,
E. M.
,
Glaude
,
P.-A.
,
Marinov
,
N. M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Layton
,
D. W.
,
Flynn
,
P. F.
,
Durrett
,
R. P.
,
Zur Loye
,
A. O.
, and
Akinyemi
,
O. C.
,
2001
, “
Detailed Chemical Kinetic Modeling of Diesel Combustion With Oxygenated Fuels
,”
SAE
Paper No. 2001-01-0653.
167.
Wang
,
H.
, and
Frenklach
,
M.
,
1997
, “
A Detailed Kinetic Modeling Study of Aromatics Formation in Laminar Premixed Acetylene and Ethylene Flames
,”
Combust. Flame
,
110
(
1–2
), pp.
173
221
.
168.
Abbass
,
M. K.
,
Andrews
,
G. E.
,
Williams
,
P. T.
, and
Bartle
,
K. D.
,
1989
, “
The Influence of Diesel Fuel Composition on Particulate PAH Emissions
,”
SAE
Technical Paper No. 892079.
169.
Agarwal
,
A. K.
,
Gupta
,
T.
,
Dixit
,
N.
, and
Shukla
,
P. C.
,
2013
, “
Assessment of Toxic Potential of Primary and Secondary Particulates/Aerosols From Biodiesel Vis-a-Vis Mineral Diesel Fuelled Engine
,”
Inhalation Toxicol.
,
25
(
6
), pp.
325
332
.
170.
Tobias
,
H. J.
,
Beving
,
D. E.
,
Ziemann
,
P. J.
,
Sakurai
,
H.
,
Zuk
,
M.
,
McMurry
,
P. H.
,
Zarling
,
D.
,
Waytulonis
,
R.
, and
Kittelson
,
D. B.
,
2001
, “
Chemical Analysis of Diesel Engine Nanoparticles Using a Nano-DMA/Thermal Desorption Particle Beam Mass Spectrometer
,”
Environ. Sci. Technol.
,
35
(
11
), pp.
2233
2243
.
171.
Rogge
,
W. F.
,
Hildemann
,
L. M.
,
Mazurek
,
M. A.
,
Cass
,
G. R.
, and
Simoneit
,
B. R.
,
1993
, “
Sources of Fine Organic Aerosol. 2. “Noncatalyst and Catalyst-Equipped Automobiles and Heavy-Duty Diesel Trucks
,”
Environ. Sci. Technol.
,
27
(
4
), pp.
636
651
.
172.
Johnson
,
J. H.
,
Bagley
,
S. T.
,
Gratz
,
L. D.
, and
Leddy
,
D. G.
,
1994
, “
A Review of Diesel Particulate Control Technology and Emissions Effects-1992 Horning Memorial Award Lecture
,”
SAE Trans.
,
103
(3), pp. 210–244.https://www.jstor.org/stable/44632788
173.
Baumgard
,
K. J.
, and
Johnson
,
J. H.
,
1992
, “
The Effect of Low Sulfur Fuel and a Ceramic Particle Filter on Diesel Exhaust Particle Size Distributions
,”
SAE
Technical Paper No. 920566.
174.
Opris
,
C. N.
,
Gratz
,
L. D.
,
Bagley
,
S. T.
,
Baumgard
,
K. J.
,
Leddy
,
D. G.
, and
Johnson
,
J. H.
,
1993
, “
The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions
,”
SAE
Technical Paper No. 930730.
175.
Godlee
,
F.
,
1991
, “
Air Pollution—II: Road Traffic and Modern Industry
,”
BMJ
,
303
(
6816
), pp. 1539–1543.
176.
Agarwal
,
A. K.
,
Gupta
,
T.
,
Shukla
,
P. C.
, and
Dhar
,
A.
,
2015
, “
Particulate Emissions From Biodiesel Fuelled CI Engines
,”
Energy Convers. Manage.
,
94
, pp.
311
330
.
177.
Gupta
,
T.
,
Kothari
,
A.
,
Srivastava
,
D. K.
, and
Agarwal
,
A. K.
,
2010
, “
Measurement of Number and Size Distribution of Particles Emitted From a Mid-Sized Transportation Multipoint Port Fuel Injection Gasoline Engine
,”
Fuel
,
89
(
9
), pp.
2230
2233
.
178.
Dolan
,
D. F.
,
Kittelson
,
D. B.
, and
Pui
,
D. Y. H.
,
1980
, “
Diesel Exhaust Particle Size Distribution Measurement Techniques
,”
SAE
Technical Paper No. 800187.
179.
Vuk
,
C. T.
,
Jones
,
M. A.
, and
Johnson
,
J. H.
,
1976
, “
The Measurement and Analysis of the Physical Character of Diesel Particulate Emissions
,”
SAE Trans.
,
85
(1), pp. 556–597.https://www.jstor.org/stable/44644058
180.
Agarwal
,
J. K.
, and
Sem
,
G. J.
,
1980
, “
Continuous Flow, Single-Particle-Counting Condensation Nucleus Counter
,”
J. Aerosol Sci.
,
11
(
4
), pp.
343
357
.
181.
Agarwal
,
A. K.
,
Gupta
,
T.
, and
Kothari
,
A.
,
2011
, “
Particulate Emissions From Biodiesel Vs Diesel Fuelled Compression Ignition Engine
,”
Renewable Sustainable Energy Rev.
,
15
(
6
), pp.
3278
3300
.
182.
Jung
,
H.
,
Kittelson
,
D. B.
, and
Zachariah
,
M. R.
,
2006
, “
Characteristics of SME Biodiesel-Fueled Diesel Particle Emissions and the Kinetics of Oxidation
,”
Environ. Sci. Technol.
,
40
(
16
), pp.
4949
4955
.
183.
Puzun
,
A.
,
Wanchen
,
S.
,
Guoliang
,
L.
,
Manzhi
,
T.
,
Chunjie
,
L.
, and
Shibao
,
C.
,
2011
, “
Characteristics of Particle Size Distributions About Emissions in a Common-Rail Diesel Engine With Biodiesel Blends
,”
Procedia Environ. Sci.
,
11
, pp.
1371
1378
.
184.
Shukla
,
P. C.
,
Gupta
,
T.
,
Labhsetwar
,
N. K.
, and
Agarwal
,
A. K.
,
2016
, “
Development of Low Cost Mixed Metal Oxide Based Diesel Oxidation Catalysts and Their Comparative Performance Evaluation
,”
RSC Adv.
,
6
(
61
), pp.
55884
55893
.
185.
Agarwal
,
A. K.
,
Dhar
,
A.
,
Srivastava
,
D. K.
,
Maurya
,
R. K.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Pressure on Diesel Particulate Size and Number Distribution in a CRDI Single Cylinder Research Engine
,”
Fuel
,
107
, pp.
84
89
.
186.
Ravindra
,
K.
,
Sokhi
,
R.
, and
Van Grieken
,
R.
,
2008
, “
Atmospheric Polycyclic Aromatic Hydrocarbons: Source Attribution, Emission Factors and Regulation
,”
Atmos. Environ.
,
42
(
13
), pp.
2895
2921
.
187.
Shukla
,
P. C.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2014
, “
A Comparative Morphological Study of Primary and Aged Particles Emitted From a Biodiesel (B20) Vis-à-Vis Diesel Fuelled CRDI Engine
,”
Aerosol. Air Qual. Res.
,
14
, pp.
934
942
.
188.
Zielinska
,
B.
,
Goliff
,
W.
,
McDaniel
,
M.
,
Cahill
,
T.
,
Kittelson
,
D.
, and
Watts
,
W.
,
2003
, “
Chemical Analyses of Collected Diesel Particulate Matter Samples in the E-43 Project
,”
National Renewable Energy Lab
, Golden, CO.
189.
Kweon
,
C. B.
,
Okada
,
S.
,
Foster
,
D. E.
,
Bae
,
M.-S.
, and
Schauer
,
J. J.
,
2003
, “
Effect of Engine Operating Conditions on Particle-Phase Organic Compounds in Engine Exhaust of a Heavy-Duty Direct-Injection (DI) Diesel Engine
,”
SAE
Technical Paper No. 2003-01-0342.
190.
Gangwar
,
J. N.
,
Gupta
,
T.
, and
Agarwal
,
A. K.
,
2012
, “
Composition and Comparative Toxicity of Particulate Matter Emitted From a Diesel and Biodiesel Fuelled CRDI Engine
,”
Atmos. Environ.
,
46
, pp.
472
481
.
191.
Agarwal
,
A. K.
,
Gupta
,
T.
, and
Kothari
,
A.
,
2010
, “
Toxic Potential Evaluation of Particulate Matter Emitted From a Constant Speed Compression Ignition Engine: A Comparison Between Straight Vegetable Oil and Mineral Diesel
,”
Aerosol. Sci. Technol.
,
44
(
9
), pp.
724
733
.
192.
Macor
,
A.
,
Avella
,
F.
, and
Faedo
,
D.
,
2011
, “
Effects of 30% v/v Biodiesel/Diesel Fuel Blend on Regulated and Unregulated Pollutant Emissions From Diesel Engines
,”
Appl. Energy
,
88
(
12
), pp.
4989
5001
.
193.
Sharp
,
C. A.
,
Howell
,
S. A.
, and
Jobe
,
J.
,
2000
, “
The Effect of Biodiesel Fuels on Transient Emissions From Modern Diesel Engines, Part I Regulated Emissions and Performance
,”
SAE
Technical Paper No. 2000-01-1967.
194.
Cheung
,
C. S.
,
Di
,
Y.
, and
Huang
,
Z.
,
2008
, “
Experimental Investigation of Regulated and Unregulated Emissions From a Diesel Engine Fueled With Ultralow-Sulfur Diesel Fuel Blended With Ethanol and Dodecanol
,”
Atmos. Environ.
,
42
(
39
), pp.
8843
8851
.
195.
Cheung
,
C. S.
,
Zhu
,
L.
, and
Huang
,
Z.
,
2009
, “
Regulated and Unregulated Emissions From a Diesel Engine Fueled With Biodiesel and Biodiesel Blended With Methanol
,”
Atmos. Environ.
,
43
(
32
), pp.
4865
4872
.
196.
McDonald
,
J. D.
,
Barr
,
E. B.
,
White
,
R. K.
,
Chow
,
J. C.
,
Schauer
,
J. J.
,
Zielinska
,
B.
, and
Grosjean
,
E.
,
2004
, “
Generation and Characterization of Four Dilutions of Diesel Engine Exhaust for a Subchronic Inhalation Study
,”
Environ. Sci. Technol.
,
38
(
9
), pp.
2513
2522
.
197.
Schauer
,
J. J.
,
Kleeman
,
M. J.
,
Cass
,
G. R.
, and
Simoneit
,
B. R.
,
1999
, “
Measurement of Emissions From Air Pollution Sources: C1 through C30 Organic Compounds From Medium Duty Diesel Trucks
,”
Environ. Sci. Technol.
,
33
(
10
), pp.
1578
1587
.
198.
Schauer
,
J. J.
,
Kleeman
,
M. J.
,
Cass
,
G. R.
, and
Simoneit
,
B. R.
,
2002
, “
Measurement of Emissions From Air Pollution Sources. 5. C1− C32 Organic Compounds From Gasoline-Powered Motor Vehicles
,”
Environ. Sci. Technol.
,
36
(
6
), pp.
1169
1180
.
199.
Grosjean
,
D.
,
Grosjean
,
E.
, and
Gertler
,
A. W.
,
2001
, “
On-Road Emissions of Carbonyls From Light-Duty and Heavy-Duty Vehicles
,”
Environ. Sci. Technol.
,
35
(
1
), pp.
45
53
.
200.
Pang
,
X.
,
Shi
,
X.
,
Mu
,
Y.
,
He
,
H.
,
Shuai
,
S.
,
Chen
,
H.
, and
Li
,
R.
,
2006
, “
Characteristics of Carbonyl Compounds Emission From a Diesel-Engine Using Biodiesel–Ethanol–Diesel as Fuel
,”
Atmos. Environ.
,
40
(
36
), pp.
7057
7065
.
201.
He
,
C.
,
Ge
,
Y.
,
Tan
,
J.
,
You
,
K.
,
Han
,
X.
,
Wang
,
J.
,
You
,
Q.
, and
Shah
,
A. N.
,
2009
, “
Comparison of Carbonyl Compounds Emissions From Diesel Engine Fueled With Biodiesel and Diesel
,”
Atmos. Environ.
,
43
(
24
), pp.
3657
3661
.
202.
Karavalakis
,
G.
,
Stournas
,
S.
, and
Bakeas
,
E.
,
2009
, “
Light Vehicle Regulated and Unregulated Emissions From Different Biodiesels
,”
Sci. Total Environ.
,
407
(
10
), pp.
3338
3346
.
203.
Fontaras
,
G.
,
Karavalakis
,
G.
,
Kousoulidou
,
M.
,
Ntziachristos
,
L.
,
Bakeas
,
E.
,
Stournas
,
S.
, and
Samaras
,
Z.
,
2010
, “
Effects of Low Concentration Biodiesel Blends Application on Modern Passenger Cars—Part 2: Impact on Carbonyl Compound Emissions
,”
Environ. Pollut.
,
158
(
7
), pp.
2496
2503
.
204.
Magara-Gomez
,
K. T.
,
Olson
,
M. R.
,
Okuda
,
T.
,
Walz
,
K. A.
, and
Schauer
,
J. J.
,
2012
, “
Sensitivity of Hazardous Air Pollutant Emissions to the Combustion of Blends of Petroleum Diesel and Biodiesel Fuel
,”
Atmos. Environ.
,
50
, pp.
307
313
.
205.
Ho
,
S. S. H.
,
Ho
,
K. F.
,
Lee
,
S. C.
,
Cheng
,
Y.
,
Yu
,
J. Z.
,
Lam
,
K. M.
,
Feng
,
N. S. Y.
, and
Huang
,
Y.
,
2012
, “
Carbonyl Emissions From Vehicular Exhausts Sources in Hong Kong
,”
J. Air Waste Manage. Assoc.
,
62
(
2
), pp.
221
234
.
206.
Di
,
Y.
,
Cheung
,
C. S.
, and
Huang
,
Z.
,
2009
, “
Experimental Investigation on Regulated and Unregulated Emissions of a Diesel Engine Fueled With Ultra-Low Sulfur Diesel Fuel Blended With Biodiesel From Waste Cooking Oil
,”
Sci. Total Environ.
,
407
(
2
), pp.
835
846
.
207.
Takada
,
K.
,
Yoshimura
,
F.
,
Ohga
,
Y.
,
Kusaka
,
J.
, and
Daisho
,
Y.
,
2003
, “
Experimental Study on Unregulated Emission Characteristics of Turbocharged DI Diesel Engine With Common Rail Fuel Injection System
,”
SAE
Paper No. 2003-01-3158.
208.
Ballesteros
,
R.
,
Hernandez
,
J. J.
,
Lyons
,
L. L.
,
Cabanas
,
B.
, and
Tapia
,
A.
,
2008
, “
Speciation of the Semivolatile Hydrocarbon Engine Emissions From Sunflower Biodiesel
,”
Fuel
,
87
(
10-11
), pp.
1835
1843
.
209.
Correa
,
S. M.
, and
Arbilla
,
G.
,
2008
, “
Carbonyl Emissions in Diesel and Biodiesel Exhaust
,”
Atmos. Environ.
,
42
(
4
), pp.
769
775
.
210.
Liu
,
Y.-Y.
,
Lin
,
T. C.
,
Wang
,
Y. J.
, and
Ho
,
W. L.
,
2009
, “
Carbonyl Compounds and Toxicity Assessments of Emissions From a Diesel Engine Running on Biodiesels
,”
J. Air Waste Manage. Assoc.
,
59
(
2
), pp.
163
171
.
211.
Xue
,
J.
,
Grift
,
T. E.
, and
Hansen
,
A. C.
,
2011
, “
Effect of Biodiesel on Engine Performances and Emissions
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1098
1116
.
212.
Lea-Langton, A. R.
,
Li, H.
, and
Andrews, G. E.
, 2008, “
Comparison of Particulate PAH Emissions for Diesel, Biodiesel and Cooking Oil Using a Heavy Duty DI Diesel Engine
,”
SAE
Paper No. 2008-01-1811.
213.
Zielinska
,
B.
,
2005
, “
Atmospheric Transformation of Diesel Emissions
,”
Exp. Toxicol. Pathol.
,
57
, pp.
31
42
.
214.
Karavalakis
,
G.
,
Stournas
,
S.
, and
Bakeas
,
E.
,
2009
, “
Effects of Diesel/Biodiesel Blends on Regulated and Unregulated Pollutants From a Passenger Vehicle Operated Over the European and the Athens Driving Cycles
,”
Atmos. Environ.
,
43
(
10
), pp.
1745
1752
.
215.
Pan
,
J.
,
Quarderer
,
S.
,
Smeal
,
T.
, and
Sharp
,
C.
,
2000
, “
Comparison of PAH and Nitro-PAH Emissions Among Standard Diesel Fuel, Biodiesel Fuel, and Their Blend on Diesel Engines
,”
48th ASMS Conference on Mass Spectrometry and Allied Topics
, Long Beach, CA, June 11–15.http://biodiesel.org/reports/20000601_tra-053.pdf
216.
Kittelson
,
D. B.
,
1985
, “
Measurements of PAH in the Cylinders of an Operating Diesel Engine
,” Environmental Protection Agency, Washington, DC, Report No. 600/D-85/012.
217.
National Research Council
,
1992
,
Automotive Fuel Economy: How Far Can We Go?
The National Academies Press, Washington, DC.
218.
Jensen
,
T. E.
, and
Hites
,
R. A.
,
1983
, “
Aromatic Diesel Emissions as a Function of Engine Conditions
,”
Anal. Chem.
,
55
(
4
), pp.
594
599
.
219.
Barbella
,
R.
,
Bertoli
,
C.
,
Ciajolo
,
A.
, and
D'anna
,
A.
,
1988
, “
Soot and Unburnt Liquid Hydrocarbon Emissions From Diesel Engines
,”
Combust. Sci. Technol.
,
59
(
1–3
), pp.
183
198
.
220.
Coniglio
,
L.
,
Bennadji
,
H.
,
Glaude
,
P. A.
,
Herbinet
,
O.
, and
Billaud
,
F.
,
2013
, “
Combustion Chemical Kinetics of Biodiesel and Related Compounds (Methyl and Ethyl Esters): Experiments and Modeling–Advances and Future Refinements
,”
Prog. Energy Combust. Sci.
,
39
(
4
), pp.
340
382
.
221.
Lai
,
J. Y.
,
Lin
,
K. C.
, and
Violi
,
A.
,
2011
, “
Biodiesel Combustion: Advances in Chemical Kinetic Modelling
,”
Prog. Energy Combust. Sci.
,
37
(
1
), pp.
1
14
.
222.
Patterson
,
M. A.
,
Kong
,
S. C.
,
Hampson
,
G. J.
, and
Reitz
,
R. D.
,
1994
, “
Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions
,”
SAE Trans.
,
103
(3), pp.
836
852
.https://www.jstor.org/stable/44632839
223.
Kong
,
S. C.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulation
,”
SAE Trans.
,
104
(3), pp.
502
518
.https://www.jstor.org/stable/44633235
224.
Ra
,
Y.
,
Reitz
,
R. D.
,
McFarlane
,
J.
, and
Daw
,
C. S.
,
2009
, “
Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
703
718
.https://www.jstor.org/stable/26272042
225.
Bajpai
,
D.
, and
Tyagi
,
V. K.
,
2006
, “
Biodiesel: Source, Production, Composition, Properties and Its Benefits
,”
J. OLEo Sci.
,
55
(
10
), pp.
487
502
.
226.
Yuan
,
W.
,
Hansen
,
A. C.
, and
Zhang
,
Q.
,
2003
, “
Predicting the Physical Properties of Biodiesel for Combustion Modelling
,”
Trans. ASAE
,
46
(
6
), pp. 1487–1493.
227.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
228.
Chakravarthy
,
K.
,
McFarlane
,
J.
,
Daw
,
S.
,
Ra
,
Y.
,
Reitz
,
R. D.
, and
Griffin
,
J.
,
2007
, “
Physical Properties of Bio-Diesel and Implications for Use of Bio-Diesel in Diesel Engines
,”
SAE Trans.
,
116
(4), pp. 885–895.https://www.jstor.org/stable/44650925
229.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Cheng
,
X.
,
Gan
,
S.
,
Lucchini
,
T.
, and
D'Errico
,
G.
,
2012
, “
Development of Thermophysical and Transport Properties for the Cfd Simulations of in-Cylinder Biodiesel Spray Combustion
,”
Energy Fuels.
,
26
(
8
), pp.
4857
4870
.
230.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
231.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2011
, “
A Combustion Model for IC Engine Combustion Simulations With Multi-Component Fuels
,”
Combust. Flame
,
158
(
1
), pp.
69
90
.
232.
Brakora
,
J. L.
,
Ra
,
Y.
, and
Reitz
,
R. D.
,
2011
, “
Combustion Model for Biodiesel-Fueled Engine Simulations Using Realistic Chemistry and Physical Properties
,”
SAE Int. J. Engines
,
4
(
1
), pp.
931
947
.
233.
Higgins
,
B. S.
,
Mueller
,
C. J.
, and
Siebers
,
D. L.
,
1999
, “
Measurements of Fuel Effects on Liquid-Phase Penetration in DI Sprays
,”
SAE
Technical Paper No. 1999-01-0519.
234.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1–2
), pp.
149
177
.
235.
Patel
,
A.
,
Kong
,
S. C.
, and
Reitz
,
R. D.
,
2004
, “
Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations
,”
SAE
Technical Paper No. 2004- 01-0558.
236.
Fisher
,
E. M.
,
Pitz
,
W. J.
,
Curran
,
H. J.
, and
Westbrook
,
C. K.
,
2000
, “
Detailed Chemical Kinetic Mechanisms for Combustion of Oxygenated Fuels
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1579
1586
.
237.
Golovitchev
,
V. I.
, and
Yang
,
J.
,
2009
, “
Construction of Combustion Models for Rapeseed Methyl Ester Bio-Diesel Fuel for Internal Combustion Engine Applications
,”
Biotechnol. Adv.
,
27
(
5
), pp.
641
655
.
238.
Brakora
,
J. L.
,
Ra
,
Y.
,
Reitz
,
R. D.
,
McFarlane
,
J.
, and
Daw
,
C. S.
,
2009
, “
Development and Validation of a Reduced Reaction Mechanism for Biodiesel-Fueled Engine Simulations
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
675
702
.
239.
Um
,
S.
, and
Park
,
S. W.
,
2010
, “
Modeling Effect of the Biodiesel Mixing Ratio on Combustion and Emission Characteristics Using a Reduced Mechanism of Methyl Butanoate
,”
Fuel
,
89
(
7
), pp.
1415
1421
.
240.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2010
, “
Detailed Chemical Kinetic Mechanism for the Oxidation of Biodiesel Fuels Blend Surrogate
,”
Combust. Flame
,
157
(
5
), pp.
893
908
.
241.
Seshadri
,
K.
,
Lu
,
T.
,
Herbinet
,
O.
,
Humer
,
S.
,
Niemann
,
U.
,
Pitz
,
W. J.
,
Seiser
,
R.
, and
Law
,
C. K.
,
2009
, “
Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Non-Premixed Flows
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1067
1074
.
242.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2008
, “
Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate
,”
Combust. Flame
,
154
(
3
), pp.
507
528
.
243.
Luo
,
Z.
,
Lu
,
T.
,
Maciaszek
,
M. J.
,
Som
,
S.
, and
Longman
,
D. E.
,
2010
, “
A Reduced Mechanism for High-Temperature Oxidation of Biodiesel Surrogates
,”
Energy Fuels
,
24
(
12
), pp.
6283
6293
.
244.
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Som
,
S.
,
Longman
,
D. E.
,
Sarathy
,
S. M.
, and
Pitz
,
W. J.
,
2012
, “
A Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications
,”
Fuel
,
99
, pp.
143
153
.
245.
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Som
,
S.
, and
Longman
,
D. E.
,
2012
, “
A Reduced Mechanism for Biodiesel Surrogates With Low Temperature Chemistry for Compression Ignition Engine Applications
,”
Combust. Theory Modell.
,
16
(
2
), pp.
369
385
.
246.
Brakora
,
J. L.
,
2012
, “
A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations
,”
Ph.D. thesis
, The University of Wisconsin–Madison, Ann Arbor, MI.https://depot.library.wisc.edu/repository/fedora/1711.dl:W53PJNA3KHX668V/datastreams/REF/content
247.
Brakora
,
J.
, and
Reitz
,
R. D.
,
2013
, “
A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1099.
You do not currently have access to this content.