The CO2 foam generated by the conventional surfactants usually does not show long-term stability due to the substantial solubility and diffusivity of CO2 in water. Silica nanoparticles with different wettability and high adsorption energy on the gas–water interface can be used as a stabilizer to enhance the stability of the CO2 foam. In this study, nine kinds of nonionic amine surfactants were employed to generate the CO2 foam, while three kinds of silica nanoparticles were selected and added to improve the CO2 foam stability. The influences of various factors, including pressure, temperature, pH, surfactant, and nanoparticle, on the CO2 foam stability have been investigated. The experimental results show that without nanoparticles, the CO2 foam stability decreases with the increase of the number of EO groups in the ethoxylated amine surfactant, especially under high-temperature and high-pressure (HTHP) conditions. In general, the nanoparticles with a low concentration (<0.5 wt %) have little influence on the CO2 foam stability, but when the concentration of nanoparticle is enhanced high enough (1.0 wt %), the CO2 foam stability can be improved significantly. In particular, by adding 1.0 wt % nanoparticle of QS-150 to 0.5 wt % surfactant of C18N(EO)2/10, the CO2 foam stability has been increased 5–6 times, while the volume of generated CO2 foam has been increased by 17–31%. Therefore, in this study, the synergetic mechanisms between the amine surfactants and the silica nanoparticles to generate and stabilize CO2 foam have been identified.

References

References
1.
Talebian
,
S. H.
,
Rahim
,
M. P.
,
Tan
,
I. M.
, and
Zitha
,
P. L. J.
,
2013
, “
Foam Assisted CO2-EOR: Concepts, Challenges and Applications
,” SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, July 2–4, SPE Paper No.
165280
.
2.
Van
,
S. L.
, and
Chon
,
B. H.
,
2017
, “
Effective Prediction and Management of a CO2 Flooding Process for Enhancing Oil Recovery Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032906
.
3.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
4.
Pang
,
Z.
,
2010
, “
The Blocking Ability and Flowing Characteristics of Steady Foams in Porous Media
,”
Transp. Porous Media
,
85
(
1
), pp.
299
316
.
5.
Zhang
,
Y.
,
Song
,
H.
,
Li
,
D.
,
Zhang
,
L.
,
Yang
,
C. H.
, Li X. L., and
Ren
,
S. R.
,
2013
, “
Experiment on High Pressure CO2 Foam Stability of Nonionic Surfactants
,”
J. China Univ. Pet. (Natural Sci. Ed.)
,
37
(
4
), pp.
119
123
.
6.
Ren
,
G.
,
Zhang
,
H.
, and
Nguyen
,
Q.
,
2013
, “
Effect of Surfactant Partitioning on Mobility Control During Carbon-Dioxide Flooding
,”
SPE J.
,
18
(
4
), pp.
752
765
.
7.
Liu
,
Y.
,
Grigg
,
R. B.
, and
Bai
,
B.
,
2005a
, “
Salinity pH and Surfactant Concentration Effects on CO2-Foam
,”
SPE International Symposium on Oilfield Chemistry
, The Woodlands, TX, Feb. 2–4, SPE Paper No.
93095
.
8.
Liu
,
Y.
,
Grigg
,
R. B.
, and
Svec
,
R. K.
,
2005b
, “
CO2 Foam Behavior: Influence of Temperature Pressure and Concentration of Surfactant
,”
SPE Production Operations Symposium
, Oklahoma City, OK, Apr. 16–19, SPE Paper No.
94307
.
9.
Zhang
,
Y.
,
Zhang
,
L.
,
Huang
,
H.
,
Niu
,
B. L.
,
Wang
,
Q. W.
, and
Ren
,
S. R.
,
2014
, “
Performance and Influence Factors of CO2 Foam Based on Anionic-Nonionic Surfactants
,”
Oilfield Chem.
,
31
(
2
), pp.
240
243
(in Chinese).
10.
Xu
,
X.
,
Saeedi
,
A.
, and
Liu
,
K.
,
2016
, “
Experimental Study on a Novel Foaming Formula for CO2 Foam Flooding
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022902
.
11.
Soleymanzadeh
,
A.
,
Gahrooei
,
H. R. E.
, and
Joekar-Niasar
,
V.
,
2017
, “
A New Empirical Model for Bulk Foam Rheology
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032911
.
12.
Farajzadeh
,
R.
,
Andrianov
,
A.
,
Bruining
,
H.
, and
Zitha, P. L. J.
,
2009
, “
Comparative Study of CO2 and N2 Foams in Porous Media at Low and High Pressure−Temperatures
,”
Ind. Eng. Chem. Res.
,
48
(
9
), pp.
4542
4552
.
13.
Alireza
,
E.
,
Mahmoud
,
J.
,
Mehran
,
S.
, and
Shaun
,
I.
,
2012
, “
Visualization of Oil Recovery by CO2-Foam Injection; Effect of Oil Viscosity and Gas Type
,”
SPE Improved Oil Recovery Symposium
, Apr. 14–18, Tulsa, OK, SPE Paper No.
152996
.
14.
Zheng
,
S. X.
, and
Yang
,
D. Y.
,
2016
, “
Experimental and Theoretical Determination of Diffusion Coefficients of CO2-Heavy Oil Systems by Coupling Heat and Mass Transfer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022901
.
15.
Chen
,
Y. S.
,
Elhag
,
A. S.
,
Poon
,
B. M.
,
Cui
,
L.
,
Ma
,
K.
,
Liao
,
S. Y.
,
Reddy
,
P. P.
,
Worthen
,
A. J.
,
Hirasaki
,
G. J.
,
Nguyen
,
Q. P.
,
Biswal
,
S. L.
, and
Johnston
,
K. P.
,
2014
, “
Switchable Nonionic to Cationic Ethoxylated Amine Surfactants for CO2 Enhanced Oil Recovery in High-Temperature, High-Salinity Carbonate Reservoirs
,”
SPE J.
,
19
(
2
), pp.
249
259
.
16.
Li
,
D. X.
,
Ren
,
B.
,
Zhang
,
L.
,
Ezekiel
,
J.
,
Ren
,
S. R.
, and
Feng
,
Y. J.
,
2015
, “
CO2-Sensitive Foams for Mobility Control and Channeling Blocking in Enhanced WAG Process
,”
Chem. Eng. Res. Des.
,
102
, pp.
234
243
.
17.
Li
,
D. X.
,
Zhang
,
L.
,
Liu
,
Y. M.
,
Kang
,
W. L.
, and
Ren
,
S. R.
,
2016
, “
CO2-Triggered Gelation for Mobility Control and Channeling Blocking During CO2 Flooding Processes
,”
Pet. Sci.
,
13
(
2
), pp.
247
258
.
18.
Zhang
,
Y. M.
,
Chu
,
Z. L.
,
Dreiss
,
C. A.
,
Wang
,
Y. J.
,
Fei
,
C. H.
, and
Feng
,
Y. J.
,
2013
, “
Smart Wormlike Micelles Switched by CO2 and Air
,”
Soft Matter
,
9
(
27
), pp.
6217
6221
.
19.
Zhang
,
Y. M.
,
Feng
,
Y. J.
,
Wang
,
Y. J.
, and
Li, X. L.
,
2013
, “
CO2-Switchable Viscoelastic Fluids Based on a Pseudogemini Surfactant
,”
Langmuir
,
29
(
13
), pp.
4187
4192
.
20.
Li
,
S. Y.
,
Qiao
,
C. Y.
,
Li
,
Z. M.
, and
Wanambwa
,
S.
,
2017
, “
Properties of Carbon Dioxide Foam Stabilized by Hydrophilic Nanoparticles and Hexadecyltrimethylammonium Bromide
,”
Energy Fuels
,
31
(
2
), pp.
1478
1488
.
21.
Sun
,
Q.
,
Li
,
Z. M.
,
Wang
,
J. Q.
,
Li
,
S. Y.
,
Li
,
B. F.
,
Jiang
,
L.
,
Wang
,
H. Y.
,
,
Q. C.
,
Zhang
,
C.
, and
Liu
,
W.
,
2015
, “
Aqueous Foam Stabilized by Partially Hydrophobic Nanoparticles in the Presence of Surfactant
,”
Colloids Surf. A
,
471
, pp.
54
64
.
22.
Espinoza
,
D. A.
,
Caldelas
,
F. M.
,
Johnston
,
K. P.
,
Bryant
,
S. L.
, and
Huh
,
C.
,
2010
, “
Nanoparticle-Stabilized Supercritical CO2 Foams for Potential Mobility Control Applications
,”
SPE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 24–28, SPE Paper No.
129925
.
23.
Yu
,
J. J.
,
Mo
,
D.
,
Liu
,
N.
,
Lee
., and
Robert
,
2013
, “
The Application of Nanoparticle-Stabilized CO2 Foam for Oil Recovery
,”
SPE International Symposium on Oilfield Chemistry
, Apr. 8–10 April, The Woodlands, TX, SPE Paper No.
164074
.
24.
DiCarlo
,
D. A.
,
Huh
,
C.
, and
Johnston
,
K. P.
,
2015
, “
Use of Engineered Nanoparticle-Stabilized CO2 Foams to Improve Volumetric Sweep of CO2 EOR Process
,” U.S. Department of Energy, NETL, Morgantown, VA, Report No.
DE-FE0005917
.https://www.researchgate.net/profile/Arun_Bhadran/post/What_do_we_do_after_capturing_CO2_using_nanoparticles/attachment/59d63ef579197b807799b7b7/AS:426010479992833@1478580221956/download/fe0005917-final-report.pdf
25.
Hassani
,
A. H.
, and
Ghazanfari
,
M. H.
,
2017
, “
Impact of Hydrophobicity of SiO2 Nanoparticles on Enhancing Properties of Colloidal Gas Aphron Fluids: An Experimental Study
,”
ASME J. Energy Resour. Technol.
,
140
(
1
), p.
012901
.
26.
Zhao
,
F. L.
,
2006
,
Principle of Chemistry
,
China University of Petroleum Press
,
Dongying, China
You do not currently have access to this content.