In this study, we analyzed the flow-back resistance of slick water fracturing fluid in shale reservoirs. The flow-back resistance mainly includes capillary force, Van der Waals (VDW) force, hydrogen bond force, and hydration stress. Shale of Lower Silurian Longmaxi Formation (LSLF) was used to study its wettability, hydration stress, and permeability change with time of slick water treatment. The results reveal that wettability of LSLF shale was more oil-wet before immersion, while it becomes more water-wet after immersion. The hydration stress of the shale increased with increasing immersion time. The permeability decreased first, then recovered with increasing immersion time. The major reason for permeability recovery is that the capillary effect (wettability) and the shale hydration make macrocracks extension and expansion and hydration-induced fractures formation.

References

References
1.
Cui
,
G.
,
Ren
,
S.
,
Rui
,
Z.
,
Ezekiel
,
J.
,
Zhang
,
L.
, and
Wang
,
H.
,
2017
, “
The Influence of Complicated Fluid-Rock Interactions on the Geothermal Exploitation in the CO2 Plume Geothermal System
,”
Appl. Energy
, (in press).
2.
Rui
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
.
3.
Rui
,
Z.
,
Guo
,
T.
,
Feng
,
Q.
,
Qu
,
Z.
,
Qi
,
N.
, and
Gong
,
F.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
.
4.
Seales
,
M. B.
,
Ertekin
,
T.
, and
Wang
,
J. Y.
,
2017
, “
Recovery Efficiency in Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
5.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Li
,
H. A.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
6.
Song
,
Z.
,
Liu
,
L.
,
Wei
,
M.
,
Bai
,
B.
,
Hou
,
J.
,
Li
,
Z.
, and
Hu
,
Y.
,
2015
, “
Effect of Polymer on Disproportionate Permeability Reduction to Gas and Water for Fractured Shales
,”
Fuel
,
143
, pp.
28
37
.
7.
Zhang
,
S.
,
Xian
,
X.
,
Zhou
,
J.
,
Liu
,
G.
,
Guo
,
Y.
,
Zhao
,
Y.
, and
Lu
,
Z.
,
2018
, “
Experimental Study of the Pore Structure Characterization in Shale With Different Particle Size
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
054502
.
8.
Mirchi
,
V.
,
Saraji
,
S.
,
Goual
,
L.
, and
Piri
,
M.
,
2015
, “
Dynamic Interfacial Tension and Wettability of Shale in the Presence of Surfactants at Reservoir Conditions
,”
Fuel
,
148
, pp.
127
138
.
9.
Sun
,
J.
, and
David
,
S.
,
2015
, “
Investigating the Effect of Improved Fracture Conductivity on Production Performance of Hydraulic Fractured Wells Through Field Case Studies and Numerical Simulations
,”
J. Can. Pet. Technol.
,
54
(
6
), pp.
442
449
.
10.
He
,
Y.
,
Cheng
,
S.
,
Li
,
S.
,
Huang
,
Y.
,
Qin
,
J.
,
Hu
,
L.
, and
Yu
,
H.
,
2017
, “
A Semianalytical Methodology to Diagnose the Locations of Underperforming Hydraulic Fractures Through Pressure-Transient Analysis in Tight Gas Reservoir
,”
SPE J.
,
22
(
3
), pp.
924
939
.
11.
Sun
,
J.
,
Davi
,
S.
, and
Huang
,
C.
,
2016
, “
Grid-Sensitivity Analysis and Comparison Between Unstructured Perpendicular Bisector and Structured Tartan/Local-Grid-Refinement Grids for Hydraulically Fractured Horizontal Wells in Eagle Ford Formation With Complicated Natural Fractures
,”
SPE J.
,
21
(
6
), pp.
2260
2275
.
12.
Vincent
,
M. C.
,
2012
, “
The Next Opportunity to Improve Hydraulic-Fracture Stimulation
,”
J. Pet. Technol.
,
64
(
3
), pp.
118
127
.
13.
Guo
,
T.
,
Li
,
Y.
,
Ding
,
Y.
,
Qu
,
Z.
,
Gai
,
N.
, and
Rui
,
Z.
,
2017
, “
Evaluation of Acid Fracturing Treatments in Shale Formation
,”
Energy Fuels
,
31
(
10
), pp.
10479
10489
.
14.
H.
,
Chong
,
Ahn
,
D.
,
Robert
, and
Y. J.
,
Wang
,
2017
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoirs: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), pp.
2903
2912
.
15.
Ahmad
,
B. A.
,
Steven
,
F. M.
, and
Robert
,
A. W.
,
2013
, “
Estimation of Fracture Volume Using Water Flowback and Production Data for Shale Gas Wells
,”
Annual Technical Conference and Exhibition
, New Orleans, LA, Sept. 30–Oct. 2, SPE Paper No.
SPE-166279-MS
.
16.
Liu
,
W.
,
Liao
,
S.
, and
Xiang
,
Q.
,
2013
, “
Status Quo of Fracturing Flowback Fluids Treatment Technologies of US Shale Gas Wells and Its Enlightenment for China
,”
Nat. Gas Geosci.
,
33
(
12
), pp.
158
162
.
17.
Estrada
,
J. M.
, and
Bhamidimarri
,
R.
,
2016
, “
A Review of the Issues and Treatment Options for Wastewater From Shale Gas Extraction by Hydraulic Fracturing
,”
Fuel
,
182
, pp.
292
303
.
18.
Cheng
,
Y.
,
2010
, “
Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractures Wells in Gasshale Reservoirs
,”
International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 10–12, SPE Paper No.
SPE-127863-MS
.
19.
Clarkson
,
C. R.
, and
Qanbari
,
F.
,
2015
, “
An Approximate Semianalytical Multiphase Forecasting Method for Multifractured Tight Light-Oil Wells With Complex Fracture Geometry
,”
J. Can. Pet. Technol.
,
54
(
6
), pp.
489
508
.
20.
Rick, Gdanski
,
D.
,
Jim
,
D.
,
Billy, Slabaugh
,
W.,F.
, and
Mark
,
A. P.
,
2005
, “
Fracture Face Damage-It Matters
,” European Formation Damage Conference
, Scheveningen, The Netherlands, May 25–27, SPE Paper No.
SPE 94649-MS
.
21.
Hoditch
,
S. A.
,
1979
, “
Factors Affecting Water Blocking and Gas Flow From Hydraulically Fractured Gas Wells
,”
J. Pet. Technol.
,
31
(
12
), pp.
1515
1524
.
22.
Al-Muntasheri
,
G. A.
,
2014
, “
A Critical Review of Hydraulic-Fracturing Fluids for Moderate-to Ultralow-Permeability Formations Over the Last Decade
,”
Soc. Pet. Eng. J.
,
29
(
4
), pp.
243
260
.
23.
Willberg
,
D. M.
,
Steinsberger
,
N.
,
Hoover
,
R.
,
Card
,
R. J.
, and
Queen
,
J.
,
1988
, “
Optimization of Fracture Cleanup Using Flowback Analysis
,”
Gas Field
, pp.
147
159
.
24.
Liu
,
N.
,
Liu
,
M.
, and
Zhang
,
S.
,
2015
, “
Flowback Patterns of Fractured Shale Gas Well
,”
Nat. Gas Geosci.
,
35
(
2–3
), pp.
50
54
.
25.
Wang
,
Q.
,
Guo
,
B.
, and
Gao
,
D.
,
2012
, “
Is Formation Damage an Issue in Shale Gas Development
,”
International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 15–17, SPE Paper No.
SPE-149623-MS
.
26.
Dehghanpour
,
H.
,
Lan
,
Q.
,
Saeed
,
Y.
,
Fei
,
H.
, and
Qi
,
Z.
,
2013
, “
Spontaneous Imbibition of Brine and Oil in Gas Shales: Effect of Water Adsorption and Resulting Microfractures
,”
Energy Fuels
,
27
(
6
), pp.
3039
3049
.
27.
Liang
,
L.
,
Xiong
,
J.
, and
Liu
,
X.
,
2015
, “
Experimental Study on Crack Propagation in Shale Formations Considering Hydration and Wettability
,”
J. Nat. Gas Sci. Eng.
,
23
, pp.
492
499
.
28.
Josh
,
M.
,
Esteban
,
L.
,
Delle Piane
,
C.
,
Sarout
,
J.
,
Dewhurst
,
D. N.
, and
Clennell
,
M. B.
,
2012
, “
Laboratory Characterisation of Shale Properties
,”
J. Pet. Sci. Eng.
,
88–89
, pp.
107
124
.
29.
Liu
,
X.
,
Xiong
,
J.
,
Liang
,
L.
,
Luo
,
C.
, and
Zhang
,
A.
,
2014
, “
Analysis of the Wettability of Longmaxi Formation Shale in the South Region of Sichuan Basin and Its Influence
,”
Nat. Gas Geosci.
,
25
(
10
), pp.
1644
1652
.
30.
Zhang
,
S.
, and
Sheng
,
J. J.
,
2017
, “
Study of the Propagation of Hydration-Induced Fractures in Mancos Shale Using Computerized Tomography
,”
Int. J. Rock Mech. Min. Sci.
,
95
, pp.
1
7
.
31.
Lu
,
Y.
,
Chen
,
M.
, and
An
,
S.
,
2012
, “
Brittle Shale Wellbore Fracture Propagation Mechanism
,”
Pet. Drilling Tech.
,
40
(
4
), pp.
13
16
.
32.
Shi
,
B.
, and
Xia
,
B.
,
2012
, “
CT Imaging and Mechanism Analysis of Crack Development by Hydration in Hard-Brittle Shale Formation
,”
Acta Pet. Sin.
,
33
(
1
), pp.
138
142
.
33.
Ma
,
T.
, and
Chen
,
P.
,
2014
, “
Study of Meso-Damage Characteristics of Shale Hydration Based on CT Scanning Technology
,”
Pet. Explor. Dev.
,
41
(
2
), pp.
249
256
.
34.
Yang
,
S.
, and
Wei
,
J.
,
2011
,
Petrophysics
,
Petroleum Industry Press
,
Beijing, China
.
35.
Philip
,
H. N.
,
2009
, “
Pore-Throat Sizes in Sandtones, Tight Sandstones and Shales
,”
AAPG Bull.
,
93
(
3
), pp.
329
340
.
36.
Gao
,
S.
,
Hu
,
Z.
,
Guo
,
W.
, and
Zuo
,
L.
,
2013
, “
Water Absorption Characteristics of Gas Shale and the Fracturing Fluid Flowback Capacity
,”
Nat. Gas Geosci.
,
33
(
12
), pp.
71
76
.
37.
Jennifer
,
L. A.
,
Edward
,
J. M.
, and
Joan
,
F. B.
,
2002
, “
Solubilities and Thermodynamic Properties of Gases in the Ionic Liquid 1-nButyl-3-Methylimidazolium Hexafluorophosphate
,”
J. Phys. Chem. B
,
106
(
29
), pp.
7315
7320
.
38.
Wu
,
K.
,
Chen
,
Z.
, and
Li
,
X.
,
2015
, “
Real Gas Transport Through Nanopores of Varying Cross Section Type and Shape in Shale Gas Reservoirs
,”
Chem. Eng. J.
,
281
, pp.
813
825
.
39.
Li
,
D.
,
Li
,
W.
, and
Li
,
B.
,
2001
, “
New Research Progress for the Hydrogen Bonds in Coal
,”
Chemistry
,
13
(
7
), pp.
411
415
.
40.
Xu
,
J.
, and
Qiu
,
Z.
,
2010
, “
Laboratory Simulation of Shales Hydration Pressure
,”
J. Daqing Pet. Inst.
,
34
(
3
), pp.
73
76
.
41.
Wang
,
P. Q.
, and
Zhou
,
S. L.
,
2003
,
Drilling Fluid and Its Interaction Theory
,
Petroleum Industry Press
,
Beijing, China
, pp.
163
168
.
42.
Wang
,
Y.
,
Dong
,
D.
,
Li
,
J.
,
Wang
,
S.
,
Li
,
X.
, and
Cheng
,
K.
,
2012
, “
Reservoir Characteristics of Shale Gas in Longmaxi Formation of the Lower Silurian, Sothern Sichuan
,”
Acta Pterolei Sin.
,
33
(
4
), pp.
552
560
.
43.
Xu
,
J.
,
Qiu
,
Z.
, and
Han
,
F.
,
2008
, “
Methods and Apparatus for Shale Hydration Experiments
,”
Drill. Fluid Completion Fluid
,
2008
(
25
), p.
4
.
44.
Zhao
,
L.
,
Wang
,
S.
,
Gao
,
W.
, and
Zhao
,
L.
,
2013
, “
Research Progress in Permeability Measurement Method of Shale Gas Reservoir
,”
Fault-Block Oil Gas Field
,
20
(
6
), pp.
763
767
.
45.
Davis
,
B.
,
2011
, “
Mythbusters: Formation Damage Myths Exposed
,” Ninth European Formation Damage Conference
, Noordwijk, The Netherlands, June 7–10, pp.
276
288
.
46.
Shi
,
B.
,
Xia
,
B.
, and
Gao
,
S.
,
2012
, “
Development and Performance Evaluation of Shale Self-Adsorption Hydration Inhibitor
,”
Pet. Drill. Tech.
,
40
(
5
), pp.
45
49
.
47.
Fairhurst
,
C.
,
1968
,
Methods of Determining in Situ Rock Stresses at Great Depths
,
U.S. Army Corps of Engineers
,
New York
.
48.
Zhang
,
H.
,
2009
,
Fracture and Damage Mechanics
,
2nd ed.
,
Beijing University of Aeronautics and Astronautics Press
,
Beijing, China
.
You do not currently have access to this content.