The present study surveys the effects on performance and emission parameters of a partially modified single cylinder direct injection (DI) diesel engine fueled with diesohol blends under varying compressed natural gas (CNG) flowrates in dual fuel mode. Based on experimental data, an artificial intelligence (AI) specialized artificial neural network (ANN) model have been developed for predicting the output parameters, viz. brake thermal efficiency (Bth), brake-specific energy consumption (BSEC) along with emission characteristics such as oxides of nitrogen (NOx), unburned hydrocarbon (UBHC), carbon dioxide (CO2), and carbon monoxide (CO) emissions. Engine load, Ethanol share, and CNG strategies have been used as input parameters for the model. Among the tested models, the Levenberg–Marquardt feed-forward back propagation with three input neurons or nodes, two hidden layers with ten neurons in each layer and six output neurons, and tansig-purelin activation function have been found to the optimal model topology for the diesohol–CNG platforms. The statistical results acquired from the optimal network topology such as correlation coefficient (0.992–0.999), mean square error (MSE) (0.0001–0.0009), and mean absolute percentage error (MAPE) (0.09–2.41%) along with Nash–Sutcliffe coefficient of efficiency (NSE), Kling–Gupta efficiency (KGE), mean square relative error, and model uncertainty established itself as a real-time robust type machine learning tool under diesohol–CNG paradigms. The study also incorporated a special type of measure, namely Pearson's Chi-square test or goodness of fit, which brings up the model validation to a higher level.

References

References
1.
Bhowmik
,
S.
,
Panua
,
R. S.
,
Ghosh
,
S. K.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
A Comparative Study of Artificial Intelligence Based Models to Predict Performance and Emission Characteristics of a Single Cylinder Diesel Engine Fueled With Diesosenol
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041004
.
2.
Bhowmik
,
S.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel-Kerosene-Ethanol Blends: A Fuzzy Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
3.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
An Experimental Study of the Performance, Combustion and Emission Characteristics of a CI Engine Under Dual Fuel Mode Using CNG and Oxygenated Pilot Fuel Blends
,”
Energy
,
86
, pp.
560
573
.
4.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R. S.
, and
Banerjee
,
R.
,
2013
, “
An Experimental Investigation of Performance-Emission Trade Off of a CI Engine Fueled by Diesel–Compressed Natural Gas (CNG) Combination and Diesel–Ethanol Blends With CNG Enrichment
,”
Energy
,
55
, pp.
787
802
.
5.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2014
, “
Effect of Diethyl Ether and Ethanol on Performance, Combustion, and Emission of Single-Cylinder Compression Ignition Engine
,”
Int. J. Ambient Energy
,
38
(1), pp. 2–13.
6.
Paul
,
A.
,
Bose
,
P. K.
,
Panua
,
R. S.
, and
Debroy
,
D.
,
2015
, “
Study of Performance and Emission Characteristics of a Single Cylinder CI Engine Using Diethyl Ether and Ethanol Blends
,”
J. Energy Inst.
,
88
(
1
), pp.
1
10
.
7.
Park
,
S. H.
,
Cha
,
J.
,
Kim
,
H. J.
, and
Lee
,
C. S.
,
2012
, “
Effect of Early Injection Strategy on Spray Atomization and Emission Reduction Characteristics in Bioethanol Blended Diesel Fueled Engine
,”
Energy
,
39
(
1
), pp.
375
87
.
8.
Li
,
D. G.
,
Zhen
,
H.
,
Xingcai
,
L.
,
Wu-gao
,
Z.
, and
Yang
,
J. G.
,
2005
, “
Physico-Chemical Properties of Ethanol-Diesel Blend Fuel and Its Effect on Performance and Emissions of Diesel Engines
,”
Renewable Energy
,
30
(
6
), pp.
967
76
.
9.
Bhowmik S.
,
Paul A.
,
Panua R. S.
,
Ghosh S. K.
, and
Debroy D.
, 2018, “
Performance-Exhaust Emission Prediction of Diesosenol Fueled Diesel Engine: An ANN Coupled MORSM Based Optimization
,”
Energy
,
153
, pp. 212–222.
10.
Shenghua
,
L.
,
Longbao
,
Z.
,
Ziyan
,
W.
, and
Jiang
,
R.
,
2003
, “
Combustion Characteristics of Compressed Natural Gas/Diesel Dual-Fuel Turbocharged Compressed Ignition Engine
,”
J. Automob. Eng.
,
217
(
9
), p.
833
.
11.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2015
, “
Effect of Diesel–Ethanol–PPME (Pongamia Pinata Methyl Ester) Blends as Pilot Fuel on CNG Dual-Fuel Operation of a CI Engine: A Performance-Emission Trade-Off Study
,”
Energy Fuels
,
29
(
4
), pp.
2394
2407
.
12.
Paul
,
A.
,
Panua
,
R. S.
,
Debroy
,
D.
, and
Bose
,
P. K.
,
2016
, “
A Performance Emission Trade Off Study of a CI Engine Fueled by Compressed Natural Gas (CNG)/Diesel–Ethanol-PPME Blend Combination
,”
Environ. Prog. Sustainable Energy
,
35
(
2
), pp.
517
530
.
13.
Huang
,
J.
,
Wang
,
Y.
,
Li
,
S.
,
Roskilly
,
A. P.
,
Yu
,
H.
, and
Li
,
H.
,
2009
, “
Experimental Investigation on the Performance and Emissions of a Diesel Engine Fuelled With Ethanol–Diesel Blends
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2484
2490
.
14.
Hardenberg
,
H.
, and
Schaefer
,
A.
,
1981
, “
The Use of Ethanol as a Fuel for Compression Ignition Engines
,”
SAE
Paper No. 811211.
15.
Hansen
,
A. C.
,
Lyne P. W. L.
, and
Zhang, Q.
, 2001, “
Ethanol-Diesel Blends a Step Towards a Bio-Based Fuel for Diesel Engines
,” ASAE Annual Meeting, Sacramento, CA, July 29–Aug. 1, ASAE Paper No.
2001—01e6048
.https://www.researchgate.net/publication/255580785_ETHANOL-DIESEL_BLENDS_A_STEP_TOWARDS_A_BIO-BASED_FUEL_FOR_DIESEL_ENGINES
16.
Lapuerta
,
M.
,
Armas
,
O.
, and
Herreros
,
J. M.
,
2008
, “
Emissions From a Diesel Bioethanol Blend in an Automotive Diesel Engine
,”
Fuel
,
87
(
1
), pp.
25
31
.
17.
Paul
,
A.
,
Panua
,
R. S.
, and
Debroy
,
D.
,
2017
, “
An Experimental Study of Combustion, Performance, Exergy and Emission Characteristics of a CI Engine Fueled by Diesel-Ethanol-Biodiesel Blends
,”
Energy
,
141
, pp.
839
852
.
18.
He, B.
,
Wang, J.
,
Yan, X.
,
Tian, X.
, and
Chen, H.
, 2003, “
Study on Combustion and Emission Characteristics of Diesel Engines Using Ethanol Blended Diesel Fuels
,”
SAE
Paper No. 2003-01-0762.
19.
Paul
,
A.
,
Panua
,
R. S.
,
Bose
,
P. K.
, and
Banerjee
,
R.
,
2013
, “
An Experimental Study of Performance and Emission Parameters of a Compression Ignition Engine Fueled by Different Blends of Diesel-Ethanol-Biodiesel
,”
International Conference on Energy Efficient Technologies for Sustainability
, Nagercoil, India, Apr. 10–12, pp.
786
791
.
20.
Kusaka
,
J.
,
Okamoto
,
T.
,
Daisho
,
Y.
,
Kihara
,
R.
, and
Saito
,
T.
,
2000
, “
Combustion and Exhaust Gas Emission Characteristics of a Diesel Engine Dual- Fueled With Natural Gas
,”
JSAE Rev.
,
21
(
4
), pp.
489
96
.
21.
Papagiannakis
,
R. G.
,
Rakopoulos
,
C. D.
,
Hountalas
,
D. T.
, and
Rakopoulos
,
D. C.
,
2010
, “
Emission Characteristics of High Speed, Dual Fuel, Compression Ignition Engine Operating in a Wide Range of Natural Gas/Diesel Fuel Proportions
,”
Fuel
,
89
(
7
), pp.
1397
406
.
22.
Oguz
,
H.
,
Sarıtas
,
I.
, and
Baydan
,
H. E.
,
2014
, “
Prediction of Diesel Engine Performance Using Biofuels With Artificial Neural Network
,”
Expert Syst. Appl.
,
37
(
9
), pp.
6579
6586
.
23.
Rezaei
,
J.
,
Shahbakhti
,
M.
,
Bahri
,
B.
, and
Aziz
,
A. A.
,
2015
, “
Performance Prediction of HCCI Engines With Oxygenated Fuels Using Artificial Neural Networks
,”
Appl. Energy
,
138
, pp.
460
473
.
24.
Ismail
,
H. M.
,
Ng
,
H. K.
,
Queck
,
C. W.
, and
Gan
,
S.
,
2012
, “
Artificial Neural Networks Modelling of Engine-out Responses for a Light-Duty Diesel Engine Fuelled With Biodiesel Blends
,”
Appl. Energy
,
92
(
0306–2619
), pp.
769
777
.
25.
Yusaf
,
T. F.
,
Buttsworth
,
D. R.
,
Saleh
,
K. H.
, and
Yousif
,
B. F.
,
2010
, “
CNG Diesel Engine Performance and Exhaust Emission Analysis With the Aid of Artificial Neural Network
,”
Appl. Energy
,
87
(
5
), pp.
1661
1669
.
26.
Najafi
,
G.
,
Ghobadian
,
B.
,
Tavakoli
,
T.
,
Buttsworth
,
D. R.
,
Yusaf
,
T. F.
, and
Faizollahnejad
,
M.
,
2009
, “
Performance and Exhaust Emissions of a Gasoline Engine With Ethanol Blended Gasoline Fuels Using Artificial Neural Network
,”
Appl. Energy
,
86
(
5
), pp.
630
639
.
27.
Channapattana
,
S. V.
,
Pawar
,
A. A.
, and
Kamble
,
P. G.
,
2017
, “
Optimisation of Operating Parameters of DI-CI Engine Fueled With Second Generation Bio-Fuel and Development of ANN Based Prediction Model
,”
Appl. Energy
,
187
, pp.
84
95
.
28.
Javed
,
S.
,
Murthy
,
Y. V. V. S.
,
Baig
,
R. U.
, and
Rao
,
D. P.
,
2015
, “
Development of ANN Model for Prediction of Performance and Emission Characteristics of Hydrogen Dual Fueled Diesel Engine With Jatropha Methyl Ester Biodiesel Blends
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
549
557
.
29.
Ghobadian
,
B.
,
Rahimi
,
H.
,
Nikbakht
,
A. M.
,
Najafi
,
G.
, and
Yusaf
,
T. F.
,
2009
, “
Diesel Engine Performance and Exhaust Emission Analysis Using Waste Cooking Biodiesel Fuel With an Artificial Neural Network
,”
Renewable Energy
,
34
(
4
), pp.
976
982
.
30.
Dawson
,
C. W.
,
Abrahart
,
R. J.
, and
See
,
L. M.
,
2007
, “
HydroTest: A Web-Based Toolbox of Evaluation Metrics for the Standardised Assessment of Hydrological Forecasts
,”
Environ. Modell. Software
,
22
(
7
), pp.
1034
1052
.
31.
Bliemel
,
F.
,
1973
, “
Theil's Forecast Accuracy Coefficient: A Clarification
,”
J. Mark. Res.
,
10
(
4
), pp.
444
446
.
You do not currently have access to this content.