The paper presents the possibilities of the use of a high-temperature gas-cooled nuclear reactor for energy purposes in the hydrogen and electricity production process. The system provides heat for a thermochemical sulfur–iodine cycle producing hydrogen and generates electricity. Its structure and electricity generation capacity are conditioned by the demand for heat and the levels of temperature required at the sulfur–iodine cycle individual stages. In the three structures under analysis, electricity is generated in a gas turbine system and steam systems (steam, low-boiling fluids). The impact of helium parameters in a two-stage compression system with interstage cooling on power efficiency of the analyzed structures of cogeneration systems and on total power efficiency of the systems is investigated assuming that both hydrogen and electricity are produced. Thermodynamic analyses are conducted using the EBSILON Professional program. The aim of the analyses is to determine the optimum structure of the system and parameters of the mediums in terms of power efficiency.

References

References
1.
Jun Bae
,
S.
,
Lee
,
J.
,
Ahn
,
Y. I.
, and
Lee
,
J.
,
2015
, “
Preliminary Studies of Compact Brayton Cycle Performance for Small Modular High Temperature Gas-Cooled Reactor System
,”
Ann. Nucl. Energy
,
75
, pp.
11
19
.
2.
Yan
,
X.
,
Noguchi
,
H.
,
Sato
,
H.
,
Tachibana
,
Y.
,
Kunitomi
,
K.
, and
Hino
,
R.
,
2014
, “
A Hybrid HTGR System Producing Electricity, Hydrogen and Such Other Products as Water Demanded in the Middle East
,”
Nucl. Eng. Des.
,
271
, pp.
20
29
.
3.
Reimert
,
R.
, and
Schad
,
M.
,
2012
, “
Process Heat From Modularized HTR
,”
Nucl. Eng. Des.
,
251
, pp.
244
251
.
4.
Misenheimer
,
C.
, and
Terry
,
S.
,
2016
, “
Modeling Hybrid Nuclear Systems With Chilled-Water Storage
,”
ASME. J. Energy Resour. Technol.
,
139
(
1
), p.
012002
.
5.
Vitart
,
X.
,
Carles
,
P.
, and
Anzieu
,
P.
,
2008
, “
A General Survey of the Potential and the Main Issues Associated With the Sulfur-Iodine Thermochemical Cycle for Hydrogen Production Using Nuclear Heat
,”
Prog. Nucl. Energy
,
50
(
2
), pp.
402
410
.
6.
Fütterer
,
M. A.
,
Fu
,
L.
,
Sink
,
C.
,
de Groot
,
S.
,
Pouchon
,
M.
,
Wan
,
Kim
,
Y.
,
Carré
,
F.
, and
Tachibana
,
Y.
,
2014
, “
Status of the Very High Temperature Reactor System
,”
Prog. Nucl. Energy
,
77
, pp.
266
281
.
7.
Harvego
,
E. A.
,
McKellar
,
M. G.
,
Sohal
,
M. S.
,
O’Brien
,
J. E.
, and
Herring
,
J. S.
,
2010
, “
System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant
,”
ASME. J. Energy Resour. Technol.
,
132
(
2
), p.
021005
.
8.
Hammache
,
A. A.
, and
Bilgen
,
E. E.
,
1992
, “
Nuclear Hydrogen Production Based on Sulfuric Acid Decomposition Process
,”
ASME. J. Energy Resour. Technol.
,
114
(
3
), pp.
227
234
.
9.
Verfrondern
,
K.
, and
Von Lensa
,
W.
,
2005
, “
Past and Present Research in Europe on the Production of Nuclear Hydrogen With HTGR
,”
Prog. Nucl. Energy
,
47
(1–4), pp.
472
483
.
10.
Berry
,
G. D.
, and
Aceves
,
S. M.
,
2005
, “
The Case for Hydrogen in a Carbon Constrained World
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
89
94
.
11.
Lubis
,
L. L.
,
Dincer
,
I. I.
, and
Rosen
,
M. A.
,
2010
, “
Life Cycle Assessment of Hydrogen Production Using Nuclear Energy: An Application Based on Thermochemical Water Splitting
,”
ASME. J. Energy Resour. Technol.
,
132
(
2
), p.
021004
.
12.
Kupecki
,
J.
,
Badyda
,
K.
, and
Anglart
,
H.
,
2011
, “
Sensitivity Analysis of Reacting Two-Phase Flow in Nuclear Heat-Based Gasification Process
,”
J. Power Technol.
,
91
(
2
), pp.
54
62
.http://papers.itc.pw.edu.pl/index.php/JPT/article/view/227
13.
Jaszczur
,
M.
,
Rosen
,
M.
,
Śliwa
,
T.
,
Dudek
,
M.
, and
Pieńkowski
,
L.
,
2016
, “
Hydrogen Production Using High Temperature Nuclear Reactors: Efficiency Analysis of a Combined Cycle
,”
Int. J. Hydrogen Energy
,
41
(
19
), pp.
7861
7871
.
14.
Luo
,
C.
,
Zhao
,
F.
,
Zhang
,
N.
, and
2014
, “
A Novel Nuclear Combined Power and Cooling System Integrating High-Temperature Gas-Cooled Reactor With Ammonia-Water Cycle
,”
Energ. Convers. Manage.
,
87
, pp.
895
904
.
15.
Bury
,
T.
,
2013
, “
Coupling of CFD and Lumped Parameter Codes for Thermal-Hydraulic Simulations of Reactor Containment
,”
Comput. Assisted Methods Eng. Sci. CAMES
,
3
(
20
), pp.
195
206
.http://cames.ippt.gov.pl/index.php/cames/article/view/66/60
16.
Zhang
,
Z.
,
Wu
,
Z.
,
Sun
,
Y.
, and
Li
,
F.
,
2006
, “
Design Aspects of the Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM
,”
Nucl. Eng. Des.
,
236
, pp.
485
490
.
17.
Zhang
,
Z.
,
Wu
,
Z.
,
Wang
,
D.
,
Xu
,
Y.
,
Sun
,
Y.
,
Li
,
F.
, and
Dong
,
Y.
,
2009
, “
Current Status and Technical Description of Chinese 2 × 250MWth HTR-PM Demonstration Plant
,”
Nucl. Eng. Des.
,
239
, pp.
1212
1219
.
18.
Liberatore
,
R.
,
Lanchi
,
M.
,
Giaconia
,
A.
, and
Tarquini
,
P.
,
2012
, “
Energy and Economic Assessment of an Industrial Plant for the Hydrogen Production by Water-Splitting Through the Sulphur-Iodine Thermochemical Cycle Powered by Concentrated Solar Energy
,”
Int. J. Hydrogen Energy
,
37
(
12
), pp.
9550
9565
.
19.
Fic, A.
,
Hanuszkiewicz-Drapała, M.
,
Jçdrzejewski, J.
, and
Składzień, J.
,
2012
, “
Development of High-Temperature Reactors for Industrial Purposes (HTRPL)
,” Task 1 of Project SP/J/1/166183/12 'Technologies Supporting Development of Safe Nuclear Power Engineering', Silesian University of Technology, Gliwice, Poland.
20.
Hanuszkiewicz-Drapała
,
M.
, and
Jçdrzejewski
,
J.
,
2015
, “
Thermodynamic Analysis of a Co-Generation System With a High-Temperature Gas-Cooled Nuclear Reactor
,”
J. Power Technol.
,
95
(5), pp.
32
41
.http://papers.itc.pw.edu.pl/index.php/JPT/article/view/645
21.
Vitart
,
X.
,
Le Duigou
,
A.
,
Carles
,
P.
, and
2006
, “
Hydrogen Production Using the Sulfur-Iodine Cycle Coupled to a VHTR: An Overview
,”
J. Energ. Convers. Manage.
,
47
(17), pp.
2740
2747
.
22.
Wolf
,
H. P.
,
2012
,
Accompanying Material for the EBSILON Professional—Training Course
,
Steag
,
Germany
.
You do not currently have access to this content.