A numerical approach was developed based on multidimensional computational fluid dynamics (CFD) to predict knocking combustion in a cooperative fuel research (CFR) engine. G-equation model was employed to track the turbulent flame front and a multizone model was used to capture auto-ignition in the end-gas. Furthermore, a novel methodology was developed wherein a lookup table generated from a chemical kinetic mechanism could be employed to provide laminar flame speed as an input to the G-equation model, instead of using empirical correlations. To account for fuel chemistry effects accurately and lower the computational cost, a compact 121-species primary reference fuel (PRF) skeletal mechanism was developed from a detailed gasoline surrogate mechanism using the directed relation graph (DRG) assisted sensitivity analysis (DRGASA) reduction technique. Extensive validation of the skeletal mechanism was performed against experimental data available from the literature on both homogeneous ignition delay and laminar flame speed. The skeletal mechanism was used to generate lookup tables for laminar flame speed as a function of pressure, temperature, and equivalence ratio. The numerical model incorporating the skeletal mechanism was employed to perform simulations under research octane number (RON) and motor octane number (MON) conditions for two different PRFs. Parametric tests were conducted at different compression ratios (CR) and the predicted values of critical CR, delineating the boundary between “no knock” and “knock,” were found to be in good agreement with available experimental data. The virtual CFR engine model was, therefore, demonstrated to be capable of adequately capturing the sensitivity of knock propensity to fuel chemistry.

References

References
1.
Singh
,
E.
,
Badra
,
J.
,
Mehl
,
M.
, and
Sarathy
,
S. M.
,
2017
, “
Chemical Kinetic Insights Into the Octane Number and Octane Sensitivity of Gasoline Surrogate Mixtures
,”
Energy Fuels
,
31
(
2
), pp.
1945
1960
.
2.
Kalghatgi
,
G. T.
,
2014
, “
Outlook for Fuels in Internal Combustion Engines
,”
Int. J. Engine Res
,
15
(
4
), pp.
383
398
.
3.
Spicher
,
U.
,
Kroger
,
H.
, and
Ganser
,
J.
,
1991
, “
Detection of Knocking Combustion Using Simultaneously High-Speed Schlieren Cinematography and Multi Optical Fiber Technique
,”
SAE
Paper No. 912312.
4.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
5.
Lovell
,
W. G.
,
1948
, “
Knocking Characteristics of Hydrocarbons
,”
Ind. Eng. Chem.
,
40
(
12
), pp.
2388
2438
.
6.
ASTM International
,
2012
, “
Standard Test Method for Research Octane Number of Spark-Ignition Engine Fuel
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D2699-12
.https://www.astm.org/DATABASE.CART/HISTORICAL/D2699-12.htm
7.
ASTM International
,
2016
, “
Standard Test Method for Motor Octane Number of Spark-Ignition Engine Fuel
,” ASTM International, West Conshohocken, PA, Standard No.
ASTM D2700-16
.https://www.astm.org/DATABASE.CART/HISTORICAL/D2700-12.htm
8.
Leppart
,
W.
,
1990
, “
The Chemical Origin of Fuel Octane Sensitivity
,”
SAE
Paper No. 902137.
9.
Westbrook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
, and
Sjoberg
,
M.
,
2017
, “
Chemical Kinetics of Octane Sensitivity in a Spark-Ignition Engine
,”
Combust. Flame
,
175
, pp.
2
15
.
10.
Sluder
,
C. S.
,
Szybist
,
J. P.
,
McCormick
,
R. L.
,
Ratcliff
,
M. A.
, and
Zigler
,
B. T.
,
2016
, “
Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization
,”
SAE Int. J. Fuels Lubr.
,
9
(
1
), pp. 80–90.
11.
Kalghatgi
,
G. T.
,
2015
, “
Developments in Internal Combustion Engines and Implications for Combustion Science and Future Transport Fuels
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
101
115
.
12.
Kalghatgi
,
G. T.
,
2013
,
Fuel/Engine Interactions
, SAE International, Warrendale, PA.
13.
Kalghatgi
,
G. T.
,
2005
, “
Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines
,”
SAE
Paper No. 2005-01-0239.
14.
Kalghatgi
,
G. T.
,
2001
, “
Fuel Anti-Knock Quality—Part I: Engine Studies
,”
SAE
Paper No. 2001-01-3584.
15.
Kalghatgi
,
G. T.
,
2001
, “
Fuel Anti-Knock Quality—Part II: Vehicle Studies—How Relevant is Motor Octane Number (MON) for Modern Engines?
,”
SAE
Paper No. 2001-01-3585.
16.
Zhang
,
B.
, and
Sarathy
,
S. M.
,
2016
, “
Lifecycle Optimized Ethanol-Gasoline Blends for Turbocharged Engines
,”
Appl. Energy
,
181
, pp.
38
53
.
17.
Boot
,
M. D.
,
Tian
,
M.
,
Hensen
,
E. J. M.
, and
Sarathy
,
S. M.
,
2017
, “
Impact of Fuel Molecular Structure on Auto-Ignition Behavior—Design Rules for Future High Performance Gasolines
,”
Prog. Energy Combust. Sci.
,
60
, pp.
1
25
.
18.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
19.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2003
, “
Modeling Ignition and Combustion in Spark-Ignition Engines Using a Level Set Method
,”
SAE
Paper No. 2003-01-0722.
20.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
, and
Lu
,
T.
,
2011
, “
Three Dimensional Simulations of Diesel Sprays Using n-Dodecane as a Surrogate
,”
Fall Technical Meeting of the Eastern States Section of the Combustion Institute
, Storrs, CT, Oct. 9–12, pp. 1–14.https://www.anl.gov/energy-systems/publication/three-dimensional-simulations-diesel-sprays-using-n-dodecane-surrogate-0
21.
Liang
,
L.
, and
Reitz
,
R. D.
,
2006
, “
Spark Ignition Engine Combustion Modeling Using a Level Set Method With Detailed Chemistry
,”
SAE
Paper No. 2006-01-0243.
22.
Liang
,
L.
,
Reitz
,
R. D.
,
Iyer
,
C. O.
, and
Yi
,
J.
,
2007
, “
Modeling Knock in Spark-Ignition Engines Using a G-Equation Combustion Model Incorporating Detailed Chemical Kinetics
,”
SAE
Paper No. 2007-01-0165.
23.
Pan
,
J.
,
Wei
,
H.
,
Shu
,
G.
,
Pan
,
M.
,
Feng
,
D.
, and
Li
,
N.
,
2017
, “
LES Analysis of Auto-Ignition Induced Abnormal Combustion Based on a Downsized SI Engine
,”
Appl. Energy
,
191
, pp.
183
192
.
24.
Ali
,
M. J. M.
,
Perez
,
F. H.
,
Vedharaj
,
S.
,
Vallinayagam
,
R.
,
Dibble
,
R.
, and
Im
,
H.
,
2017
, “
Effect of Timing and Location of Hotspot on Super Knock During Pre-Ignition
,”
SAE
Paper No. 2017-01-0686.
25.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1982
, “
Burning Velocities of Mixtures of Air and Methanol, Isooctane and Indolene at High Pressures and Temperatures
,”
Combust. Flame
,
48
, pp.
191
210
.
26.
Gulder
,
O. L.
,
1984
, “
Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels
,”
SAE
Paper No. 841000.
27.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
28.
Mehl
,
M.
,
Faravelli
,
T.
,
Giavazzi
,
F.
,
Ranzi
,
E.
,
Scorletti
,
P.
,
Tardani
,
A.
, and
Tarna
,
D.
,
2006
, “
Detailed Chemistry Promotes Understanding of Octane Numbers and Gasoline Sensitivity
,”
Energy Fuels
,
20
(
6
), pp.
2391
2398
.
29.
Yates
,
A. D. B.
,
Swarts
,
A.
, and
Vilijoen
,
C. L.
,
2005
, “
Correlating Auto-Ignition Delays and Knock-Limited Spark-Advance Data for Different Types of Fuel
,”
SAE
Paper No. 2005-01-2083.
30.
Convergent Science
,
2016
,
CONVERGE 2.3 Theory Manual
,
Convergent Science
,
Middleton, WI
.
31.
Imming
,
H. S.
,
1944
, “
The Effect of Piston-Head Temperature on Knock-Limited Power
,” Glenn Research Center, Cleveland, OH, Technical Report No.
NACA-WR-E-35
.https://ntrs.nasa.gov/search.jsp?R=20050019668
32.
Wittmann, N. O.
, 1946, “
Piston Temperature Measurement and Piston Design Investigation on a CFR Engine
,”
Ph.D. dissertation
, Massachusetts Institute of Technology, Cambridge, MA.https://calhoun.nps.edu/bitstream/handle/10945/6510/pistontemperatur00witt.pdf;sequence=3
33.
Marr
,
M. A.
,
Wallace
,
J. S.
,
Chandra
,
S.
,
Pershin
,
L.
, and
Mostaghimi
,
J.
,
2010
, “
A Fast Response Thermocouple for Internal Combustion Engine Surface Temperature Measurements
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
183
189
.
34.
Demuynck
,
J.
,
Raes
,
N.
,
Zuliani
,
M.
,
Peaepe
,
M. D.
,
Sierens
,
R.
, and
Verhelst
,
S.
,
2009
, “
Local Heat Flux Measurements in a Hydrogen and Methane Spark Ignition Engine With a Thermopile Sensor
,”
Int. J. Hydrogen Energy
,
34
(
24
), pp.
9857
9868
.
35.
Nishiwaki
,
K.
,
1998
, “
Modeline Engine Heat Transfer and Flame-Wall Interaction
,”
Fourth International Symposium COMODIA
, Kyoto, Japan, July 20–23, pp.
35
44
.
36.
Lyford-Pike
,
E. J.
, and
Heywood
,
J. B.
,
1984
, “
Thermal Boundary Layer Thickness in the Cylinder of a Spark-Ignition Engine
,”
Int. J. Heat Mass Transfer
,
27
(
10
), pp.
1873
1878
.
37.
Deslandes
,
G.
,
1975
, “
The Motored Engine Autoignition of Hydrogen and Methane
,” Ph.D. thesis, The University of Melbourne, Melbourne, Australia.
38.
Givler
,
S.
,
Raju
,
M.
,
Pomraning
,
E.
,
Senecal
,
P.
,
Salman
,
N.
, and
Reese
,
R.
,
2013
, “
Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines Using a Reduced Chemical Mechanism
,”
SAE
Paper No. 2013-01-1098.
39.
Pomraning
,
E.
,
Richards
,
K.
, and
Senecal
,
P.
,
2014
, “
Modeling Turbulent Combustion Using a RANS Model, Detailed Chemistry, and Adaptive Mesh Refinement
,”
SAE
Paper No. 2014-01-1116.
40.
Scarcelli
,
R.
,
Richards
,
K.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Wallner
,
T.
, and
Sevik
,
J.
,
2016
, “
Cycle-to-Cycle Variations in Multi-Cycle Engine RANS Simulations
,”
SAE
Paper No. 2016-01-0593.
41.
Robert
,
A.
,
Richard
,
S.
,
Colin
,
O.
,
Martinez
,
L.
, and
Francqueville
,
L. D.
,
2015
, “
LES Prediction and Analysis of Knocking Combustion in a Spark Ignition Engine
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
2941
2948
.
42.
Robert
,
A.
,
Richard
,
S.
,
Colin
,
O.
, and
Poinsot
,
T.
,
2015
, “
LES Study of Deflagration to Detonation Mechanisms in a Downsized Spark Ignition Engine
,”
Combust. Flame
,
162
(
7
), pp.
2788
2807
.
43.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
44.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable Density Turbulence Flow With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(
3
), pp.
613
625
.
45.
Ewald
,
J.
, and
Peters
,
N.
,
2005
, “
A Level Set Based Flamelet Model for the Prediction of Combustion in Spark Ignition Engines
,”
15th International Multidimensional Engineering Models User Group
, Detroit, MI, Apr. 11, pp. 1–6.https://www.erc.wisc.edu/documents/6-Aachen-Int3DEngine2005_EwaldPeters.pdf
46.
Senecal
,
P.
,
Pomraning
,
E.
,
Richards
,
K.
,
Briggs
,
T.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Paper No. 2003-01-1043.
47.
Pal
,
P.
,
Keum
,
S.
, and
Im
,
H. G.
,
2016
, “
Assessment of Flamelet Versus Multi-Zone Combustion Modeling Approaches for Stratified-Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
17
(
3
), pp.
280
290
.
48.
Pal
,
P.
,
2016
, “
Computational Modeling and Analysis of Low Temperature Combustion Regimes for Advanced Engine Applications
,”
Ph.D. dissertation
, University of Michigan-Ann Arbor, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/120735
49.
Keum
,
S.
,
Pal
,
P.
,
Im
,
H. G.
,
Babajimopoulos
,
A.
, and
Assanis
,
D. N.
,
2016
, “
Effects of Fuel Injection Parameters on the Performance of Homogeneous Charge Compression Ignition at Low-Load Conditions
,”
Int. J. Engine Res.
,
17
(
4
), pp.
413
420
.
50.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver
,
M.
,
Cleary
,
D.
, and
Som
,
S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp. 56–68.
51.
Kodavasal
,
J.
,
Kolodziej
,
C. K.
,
Ciatti
,
S. A.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
52.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2016
, “
Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032205
.
53.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2012
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biofuel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032204
.
54.
Wu
,
Y.
,
Pal
,
P.
,
Som
,
S.
, and
Lu
,
T.
,
2017
, “
A Skeletal Chemical Kinetic Mechanism for Gasoline and Gasoline/Ethanol Blend Surrogates for Engine CFD Applications
,”
International Conference on Chemical Kinetics
, Chicago, IL, May 21–25, Paper No. CFD008.
55.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(1), pp.
193
200
.
56.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
57.
Lu
,
T.
, and
Law
,
C. K.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: N-Heptane and Iso-Octane
,”
Combust. Flame
,
144
(1–2), pp.
24
36
.
58.
Luo
,
Z.
,
Lu
,
T.
,
Maciaszek
,
M. J.
,
Som
,
S.
, and
Longman
,
D. E.
,
2010
, “
A Reduced Mechanism for High-Temperature Oxidation of Biodiesel Surrogates
,”
Energy Fuels
,
24
(
12
), pp.
6283
6293
.
59.
Zheng
,
X. L.
,
Lu
,
T.
, and
Law
,
C. K.
,
2007
, “
Experimental Counterflow Ignition Temperatures and Reaction Mechanisms of 1,3-Butadiene
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
367
375
.
60.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: N -Heptane
,”
Combust. Flame
,
154
(
1
), pp.
153
163
.
61.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(4), pp.
599
619
.
62.
Davis
,
S. G.
, and
Law
,
C. K.
,
1998
, “
Determination of Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
(1), pp.
427
449
.
63.
Kwon
,
O. C.
,
Hassan
,
M. I.
, and
Faeth
,
G. M.
,
2000
, “
Flame/Stretch Interactions of Premixed Fuel-Vapor/O/N Flames
,”
J. Propul. Power
,
16
(
3
), pp.
513
522
.
64.
Huang
,
Y.
,
Sung
,
C. J.
, and
Eng
,
J. A.
,
2004
, “
Laminar Flame Speeds of Primary Reference Fuels and Reformer Gas Mixtures
,”
Combust. Flame
,
139
(3), pp.
239
251
.
65.
Kwon
,
K.
,
Freeh
,
J. E.
,
Sung
,
C. J.
, and
Huang
,
Y.
,
2007
, “
Laminar Flame Speeds of Preheated Iso-Octane/O2/N2 and n-Heptane/O2/N2 Mixtures
,”
J. Propul. Power
,
23
(
2
), pp.
428
436
.
66.
Van Lipzig
,
J. P. J.
,
Nilsson
,
E. J. K.
,
de Goey
,
L. P. H.
, and
Konnov
,
A. A.
,
2011
, “
Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures
,”
Fuel
,
90
(4), pp.
2773
2781
.
67.
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Bounaceur
,
R.
,
Le Gall
,
H.
,
da Cruz
,
A. P.
,
Konnov
,
A. A.
, and
Battin-Leclerc
,
F.
,
2014
, “
Laminar Burning Velocities of n-Heptane, Iso-Octane, Ethanol and Their Binary and Tertiary Mixtures
,”
Fuel
,
115
, pp.
162
169
.
68.
Kalghatgi
,
G.
,
Algunaibet
,
I.
, and
Morganti
,
K.
,
2017
, “
On Knock Intensity and Superknock in SI Engines
,”
SAE Int. J. Engines
,
10
(
3
), pp. 1051–1063.
69.
Breda
,
S.
,
D'Adamo
,
A.
,
Fontanesi
,
S.
,
Giovannoni
,
N.
,
Tests
,
F.
,
Irimescu
,
A.
,
Merola
,
S.
,
Tornatore
,
C.
, and
Valentino
,
G.
,
2016
, “
CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine
,”
SAE Int. J. Engines
,
9
(
1
), pp. 641–656.
70.
Kalghatgi
,
G. T.
,
Golombok
,
M.
, and
Snowdon
,
P.
,
1995
, “
Fuel Effects on Knock, Heat Release and ‘CARS’ Temperatures in a Spark Ignition Engine
,”
Combust. Sci. Technol.
,
110–111
(
1
), pp.
209
228
.
71.
Brecq
,
G.
,
Bellettre
,
J.
, and
Tazerout
,
M.
,
2003
, “
A New Indicator for Knock Detection in Gas SI Engines
,”
Int. J. Therm. Sci.
,
42
(5), pp.
523
532
.
72.
Brecq
,
G. L.
, and
Corre
,
O.
,
2005
, “
Modeling of In-Cylinder Pressure Oscillations Under Knocking Conditions: Introduction to Pressure Envelope Curve
,”
SAE
Paper No. 2005-01-1126.
73.
Pal
,
P.
,
Kolodziej
,
C.
,
Choi
,
S.
,
Som
,
S.
,
Broatch
,
A.
,
Soriano
,
J. G.
,
Wu
,
Y.
,
Lu
,
T.
, and
See
,
Y. C.
,
2018
, “
Development of a Virtual CFR Engine Model for Knocking Combustion Analysis
,”
SAE
Paper No. 2018-01-0187.
74.
Im
,
H. G.
,
Pal
,
P.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
A Regime Diagram for Autoignition of Homogeneous Reactant Mixtures With Turbulent Velocity and Temperature Fluctuations
,”
Combust. Sci. Technol.
,
187
(
8
), pp.
1263
1275
.
75.
Pal
,
P.
,
Valorani
,
M.
,
Arias
,
P. G.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
,
Ciottoli
,
P. P.
, and
Galassi
,
R. M.
,
2017
, “
Computational Characterization of Ignition Regimes in a Syngas/Air Mixture With Temperature Fluctuations
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3705
3716
.
76.
Pal
,
P.
,
Mansfield
,
A. B.
,
Arias
,
P. G.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
A Computational Study of Syngas Auto-Ignition Characteristics at High-Pressure and Low-Temperature Conditions With Thermal Inhomogeneities
,”
Combust. Theory Modell.
,
19
(
5
), pp.
587
601
.
77.
Pal
,
P.
,
Mansfield
,
A. B.
,
Wooldridge
,
M. S.
, and
Im
,
H. G.
,
2015
, “
Characteristics of Syngas Auto-Ignition at High Pressure and Low Temperature Conditions With Thermal Inhomogeneities
,”
Energy Procedia
,
66
, pp.
1
4
.
78.
Pal
,
P.
,
Valorani
,
M.
,
Im
,
H. G.
, and
Wooldridge
,
M. S.
,
2015
, “
Prediction of Strong and Weak Ignition Regimes in Turbulent Reacting Flows With Temperature Fluctuations: A Direct Numerical Study
,”
68th Annual Meeting of APS Division of Fluid Dynamics
, Boston, MA, Nov. 22–24.https://meetings.aps.org/Meeting/DFD15/Session/G40.5
79.
Pal
,
P.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
Effects of Turbulence and Temperature Fluctuations on Syngas Auto-Ignition
,”
Seventh European Combustion Meeting
, Budapest, Hungary, Mar. 30–Apr. 2, Paper No.
P2-35
http://www.ecm2015.hu/papers/P2-35.pdf.
80.
Pal
,
P.
,
Im
,
H. G.
,
Wooldridge
,
M. S.
, and
Mansfield
,
A. B.
,
2015
, “
Auto-Ignition Phenomena in Thermally Inhomogeneous Turbulent Reacting Flows; Numerical Validation of a Regime Diagram
,”
Tenth Asia-Pacific Conference on Combustion
, Beijing, China, July 19–22, Paper No.
119
https://experts.umich.edu/en/publications/auto-ignition-phenomena-in-thermally-inhomogeneous-turbulent-reac.
You do not currently have access to this content.