This study presents an analysis of coupling steam, CO2 and O2 reforming of CH4 using the thermodynamic equilibrium constant method. Effects of molar ratio of O2/CH4, H2O/CH4 and CO2/CH4 on reforming characteristics in both carbon deposition and carbon-free systems are analyzed. The results indicate that CH4 conversion rate, H2, and CO yield increase with increasing O2/CH4 molar ratio in two systems. In addition, the carbon elimination is achieved when O2/CH4 ratio increases to 0.31, and changing the amount of O2 can be an effective way to alter n(H2)/n(CO) ratio in the carbon deposition systems. CH4 conversion rate increases with increasing H2O/CH4 ratio in the carbon-free system, while it declines in the carbon deposition system. H2O plays a role of altering n(H2)/n(CO) ratio, and its effects on two systems are opposite. The deposited carbon is totally eliminated when H2O/CH4 ratio increases to 0.645. The increase of CO2/CH4 molar ratio leads to a rapid increase of CO2 conversion when CO2/CH4 ratio is less than 0.5. A slightly change of CO2/CH4 ratio can result in a huge difference on n(H2)/n(CO) ratio in both systems, and carbon elimination is achieved at CO2/CH4 = 0.99. The analyzed results have theoretical significance to efficiently catalyze methane coupling.

References

References
1.
Monds
,
J. R.
,
2013
, “
Multicriteria Decision Analysis for Wave Power Technology in Canada
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021201
.
2.
Kaufui
,
V. W.
,
2014
, “
Engineering Solutions to the Greenhouse Gases Generated by Hydroelectric Plants
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024701
.
3.
Platzer
,
M. F.
,
Sarigul-Klijn
,
N.
,
Young
,
J.
,
Ashraf
,
M. A.
, and
Lai
,
J. C. S.
,
2014
, “
Renewable Hydrogen Production Using Sailing Ships
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021203
.
4.
Bshish
,
A.
,
Yaakob
,
Z.
,
Ebshish
,
A.
, and
Alhasan
,
F. H.
,
2013
, “
Hydrogen Production Via Ethanol Steam Reforming Over Ni/Al2O3 Catalysts: Effect of Ni Loading
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012601
.
5.
Minutillo
,
M.
, and
Perna
,
A.
,
2010
, “
A Novel Approach for Treatment of CO2 From Fossil Fired Power Plants—Part B: The Energy Suitability of Integrated Tri-Reforming Power Plants (ITRPPs) for Methanol Production
,”
Int. J. Hydrogen Energy
,
35
(
13
), pp.
7012
7020
.
6.
Kongpanna
,
P.
,
Pavarajarn
,
V.
,
Gani
,
R.
, and
Assabumrungrat
,
S.
,
2015
, “
Techno-Economic Evaluation of Different CO2-Based Processes for Dimethyl Carbonate Production
,”
Chem. Eng. Res. Des.
,
93
, pp.
496
510
.
7.
Sengodan
,
S.
,
Lan
,
R.
,
Humphreys
,
J.
,
Du
,
D.
,
Xu
,
W.
,
Wang
,
H.
, and
Tao
,
S.
,
2018
, “
Advances in Reforming and Partial Oxidation of Hydrocarbons for Hydrogen Production and Fuel Cell Applications
,”
Renewable Sustainable Energy Rev.
,
82
(Pt. 1), pp.
761
780
.
8.
Cao
,
J.
,
Ma
,
Y.
,
Guan
,
G.
,
Hao
,
X.
,
Ma
,
X.
,
Wang
,
Z.
,
Kusakabe
,
K.
, and
Abudula
,
A.
,
2016
, “
Reaction Intermediate Species During the Steam Reforming of Methanol Over Metal Modified Molybdenum Carbide Catalysts
,”
Appl. Catal., B
,
189
, pp.
12
18
.
9.
Zou
,
H.
,
Chen
,
S.
,
Huang
,
J.
, and
Zhao
,
Z.
,
2017
, “
Effect of Impregnation Sequence on the Catalytic Performance of NiMo Carbides for the Tri-Reforming of Methane
,”
Int. J. Hydrogen Energy
,
42
(
32
), pp.
20401
20409
.
10.
Wiranarongkorn
,
K.
,
Authayanun
,
S.
,
Assabumrungrat
,
S.
, and
Arpornwichanop
,
A.
,
2016
, “
Analysis of Thermally Coupling Steam and Tri-Reforming Processes for the Production of Hydrogen From Bio-Oil
,”
Int. J. Hydrogen Energy
,
41
(
41
), pp.
18370
18379
.
11.
Hart
,
A.
,
Leeke
,
G.
,
Greaves
,
M.
, and
Wood
,
J.
,
2014
, “
Down-Hole Heavy Crude Oil Upgrading by CAPRI: Effect of Hydrogen and Methane Gases Upon Upgrading and Coke Formation
,”
Fuel
,
119
, pp.
226
235
.
12.
Ozgun
,
Y.
, and
Hastaoglu
,
M. A.
,
2016
, “
Comprehensive Study of Steam Reforming of Methane in Membrane Reactors
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052204
.
13.
Mokheimer
,
E. M. A.
,
Hussain
,
M. I.
,
Ahmed
,
S.
,
Habib
,
M. A.
, and
Al-Qutub
,
A. A.
,
2014
, “
On the Modeling of Steam Methane Reforming
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012001
.
14.
Jeong
,
H. H.
,
Kwak
,
J. H.
,
Han
,
G. Y.
, and
Yoon
,
K. J.
,
2011
, “
Stepwise Production of Syngas and Hydrogen Through Methane Reforming and Water Splitting by Using a Cerium Oxide Redox System
,”
Int. J. Hydrogen Energy
,
36
(
23
), pp.
15221
15230
.
15.
Kim
,
T. W.
,
Park
,
J. C.
,
Lim
,
T.
,
Jung
,
H.
,
Chun
,
D.
,
Lee
,
H.
,
Hong
,
S.
, and
Yang
,
J.
,
2015
, “
The Kinetics of Steam Methane Reforming Over a Ni/γ-Al2O3 Catalyst for the Development of Small Stationary Reformers
,”
Int. J. Hydrogen Energy
,
40
(
13
), pp.
4512
4518
.
16.
Watanabe
,
F.
,
Kaburaki
,
I.
,
Shimoda
,
N.
, and
Satokawa
,
S.
,
2016
, “
Influence of Nitrogen Impurity for Steam Methane Reforming Over Noble Metal Catalysts
,”
Fuel Process Technol.
,
152
, pp.
15
21
.
17.
Fan
,
M.
,
Abdullah
,
A. Z.
, and
Bhatia
,
S.
,
2011
, “
Hydrogen Production From Carbon Dioxide Reforming of Methane Over Ni–Co/MgO–ZrO2 Catalyst: Process Optimization
,”
Int. J. Hydrogen Energy
,
36
(
8
), pp.
4875
4886
.
18.
García-Vargas
,
J. M.
,
Valverde
,
J. L.
,
Díez
,
J.
,
Sánchez
,
P.
, and
Dorado
,
F.
,
2015
, “
Preparation of Ni-Mg/β-SiC Catalysts for the Methane Tri-Reforming: Effect of the Order of Metal Impregnation
,”
Appl. Catal., B
,
164
, pp.
316
323
.
19.
García-Vargas
,
J. M.
,
Valverde
,
J. L.
,
Díez
,
J.
,
Dorado
,
F.
, and
Sánchez
,
P.
,
2015
, “
Catalytic and Kinetic Analysis of the Methane Tri-Reforming Over a Ni-Mg/β-SiC Catalyst
,”
Int. J. Hydrogen Energy
,
40
(
28
), pp.
8677
8687
.
20.
Majewski
,
A. J.
, and
Wood
,
J.
,
2014
, “
Tri-Reforming of Methane Over Ni@SiO2 Catalyst
,”
Int. J. Hydrogen Energy
,
39
(
24
), pp.
12578
12585
.
21.
Yan
,
Y. F.
,
Zhang
,
Z. E.
,
Zhang
,
L.
,
Wang
,
X.
,
Liu
,
K.
, and
Yang
,
Z.
,
2015
, “
Investigation of Autothermal Reforming of Methane for Hydrogen Production in a Spiral Multi-Cylinder Micro-Reactor Used for Mobile Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
4
), pp.
1886
1893
.
22.
Yan
,
Y. F.
,
Tang
,
W. M.
,
Zhang
,
L.
,
Zhang
,
X.
,
Niu
,
L. X.
,
Liu
,
K.
, and
Zhu
,
J. Z.
,
2014
, “
Numerical Investigation of Components Influence on Characteristics of Auto-Thermal Reforming of Methane in Micro Premix Chamber
,”
Int. J. Hydrogen Energy
,
39
(
22
), pp.
11583
11591
.
23.
Yan
,
Y. F.
,
Yan
,
H. Y.
,
Zhang
,
L.
,
Li
,
L. X.
,
Zhu
,
J. C.
, and
Zhang
,
Z. E.
,
2018
, “
Numerical Investigation on Combustion Characteristics of Methane/Air in a Micro-Combustor With a Regular Triangular Pyramid Bluff Body
,”
Int. J. Hydrogen Energy
,
43
(
15
), pp.
7581
7590
.
24.
Korup
,
O.
,
Schlögl
,
R.
, and
Horn
,
R.
,
2012
, “
Carbon Formation in Catalytic Partial Oxidation of Methane on Platinum: Model Studies on a Polycrystalline Pt Foil
,”
Catal. Today
,
181
(
1
), pp.
177
183
.
25.
Chen
,
Z. Y.
,
2005
,
Chemical Thermodynamics and Refractory Compositions
,
Metallurgical Industry Press
,
Beijing, China
, pp.
162
172
.
26.
Ye
,
D. L.
,
2002
,
Practical Handbook of Thermodynamic Data of Inorganic
,
Beijing Metallurgical Industry Press
, Beijing, China, pp.
1
9
.
27.
Liu
,
Y.
,
Zhang
,
J. Y.
,
Fan
,
A. W.
,
Wan
,
J. L.
,
Yao
,
H.
, and
Liu
,
W.
,
2014
, “
Numerical Investigation of CH4/O2 Mixing in Y-Shaped Mesoscale Combustors With/Without Porous Media
,”
Chem. Eng. Process.
,
79
(3), pp.
7
13
.
28.
Khoshtinat Nikoo
,
M.
, and
Amin
,
N. A. S.
,
2011
, “
Thermodynamic Analysis of Carbon Dioxide Reforming of Methane in View of Solid Carbon Formation
,”
Fuel Process. Technol.
,
92
(
3
), pp.
678
691
.
29.
Gan
,
Y. H.
,
Xue
,
F.
, and
Yang
,
Z. L.
,
2010
, “
Experimental Study on the Diffusion Flame From Small Ceramic Tube
,”
Asia-Pacific Power and Energy Engineering Conference
(
APPEEC
), Chengdu, China, Mar. 28–31, pp.
1
4
.
30.
Butcher
,
H.
,
Quenzel
,
C. J. E.
,
Breziner
,
L.
,
Mettes
,
J.
,
Wilhite
,
B. A.
, and
Bossard
,
P.
,
2014
, “
Design of an Annular Microchannel Reactor (AMR) for Hydrogen and/or Syngas Production Via Methane Steam Reforming
,”
Int. J. Hydrogen Energy
,
39
(
31
), pp.
18049
18057
.
31.
Antzara
,
A.
, and
Heracleous
,
E.
,
2015
, “
Thermodynamic Analysis of Hydrogen Production Via Chemical Looping Steam Methane Reforming Coupled With In Situ CO2 Capture
,”
Int. J. Greenhouse Gas Control
,
32
, pp.
115
128
.
You do not currently have access to this content.