Gasoline compression ignition (GCI) offers the potential to reduce criteria pollutants while achieving high fuel efficiency. This study aims to investigate the fuel chemical and physical properties effects on GCI operation in a heavy-duty diesel engine through closed-cycle, three-dimensional (3D) computational fluid dynamic (CFD) combustion simulations, investigating both mixing-controlled combustion (MCC) at 18.9 compression ratio (CR) and partially premixed combustion (PPC) at 17.3 CR. For this work, fuel chemical properties were studied in terms of the primary reference fuel (PRF) number (0–91) and the octane sensitivity (0–6) while using a fixed fuel physical surrogate. For the fuel physical properties effects investigation, six physical properties were individually perturbed, varying from the gasoline to the diesel range. Combustion simulations were carried out at 1375 RPM and 10 bar brake specific mean pressure (BMEP). Reducing fuel reactivity was found to influence ignition delay time (IDT) more significantly for PPC than for MCC. 0D IDT calculations suggested that the fuel reactivity impact on IDT diminished with an increase in temperature. Moreover, higher reactivity gasolines exhibited stronger negative coefficient (NTC) behavior and their IDTs showed less sensitivity to temperature change. In addition, increasing octane sensitivity was observed to result in higher fuel reactivity and shorter IDT. Under both MCC and PPC, all six physical properties showed little impact on global combustion behavior, NOx, and fuel efficiency. Among the physical properties investigated, only density showed a notable effect on soot emissions. Increasing density led to higher soot due to deteriorated air entrainment into the spray and the slower fuel-air mixing process.

References

References
1.
Zhang
,
Y.
,
Voice
,
A.
,
Tzanetakis
,
T.
,
Traver
,
M.
, and
Cleary
,
D.
,
2016
, “
An Evaluation of Combustion and Emissions Performance With Low Cetane Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102805
.
2.
Zhang
,
Y.
,
Kumar
,
P.
,
Traver
,
M.
, and
Cleary
,
D.
,
2016
, “
Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
9
(
2
), pp.
1021
1035
.
3.
Zhang
,
Y.
,
Sommers
,
S.
,
Pei
,
Y.
,
Kumar
,
P.
,
Voice
,
A.
,
Traver
,
M.
, and
Cleary
,
D.
,
2017
, “
Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine
,”
SAE
Paper No. 2017-01-0696.
4.
Kalghatgi
,
G.
,
Risberg
,
P.
, and
Ångström
,
H.
,
2006
, “
Advantages of Fuels With High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion
,”
SAE
Paper No. 2006-01-3385.
5.
Kalghatgi
,
G.
,
Risberg
,
P.
, and
Ångström
,
H.
,
2007
, “
Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison With a Diesel Fuel
,”
SAE
Paper No. 2007-01-0006.
6.
Kalghatgi
,
G.
,
Hildingsson
,
L.
, and
Johansson
,
B.
,
2010
, “
Low NOx and Low Smoke Operation of a Diesel Engine Using Gasoline-like Fuels
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
092803
.
7.
Groendyk
,
M.
, and
Rothamer
,
D.
,
2015
, “
Effects of Fuel Physical Properties on Auto-Ignition Characteristics in a Heavy Duty Compression Ignition Engine
,”
SAE Int. J. Fuels Lubr.
,
8
(
1
), pp.
200
213
.
8.
Naber
,
J.
, and
Siebers
,
D.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE
Paper No. 960034.
9.
Kim
,
D.
,
Martz
,
J.
, and
Violi
,
A.
,
2016
, “
Effects of Fuel Physical Properties on Direct Injection Spray and Ignition
,”
Fuel
,
180
, pp.
481
496
.
10.
De Ojeda
,
W.
,
Bulicz
,
T.
,
Han
,
X.
,
Zheng
,
M.
, and
Cornforth, F.
,
2011
, “
Impact of Fuel Properties on Diesel Low Temperature Combustion
,”
SAE Int. J. Engines
,
4
(
1
), pp.
188
201
.
11.
Genzale
,
C.
,
Pickett
,
L.
, and
Kook
,
S.
,
2010
, “
Liquid Penetration of Diesel and Biodiesel Sprays at Late-Cycle Post-Injection Conditions
,”
SAE Int. J. Engines
,
3
(
1
), pp.
479
495
.
12.
Chang
,
C.
, and
Farrell
,
P.
,
1997
, “
A Study on the Effects of Fuel Viscosity and Nozzle Geometry on High Injection Pressure Diesel Spray Characteristics
,”
SAE
Paper No. 970353.
13.
Dernotte
,
J.
,
Hespel
,
C.
,
Houillé
,
S.
,
Foucher
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2012
, “
Influence of Fuel Properties on the Diesel Injection Process in Nonvaporizing Conditions
,”
Atomization Sprays
,
22
(
6
), pp. 461–492.
14.
Zheng
,
Z.
,
Lee
,
P.
,
Shrestha
,
A.
,
Badawy
,
T.
,
Lai, M.
,
Henein, N.
, and
Sattler, E.
,
2014
, “
Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
116
130
.
15.
Shrestha
,
A.
,
Joshi
,
U.
,
Zheng
,
Z.
,
Badawy
,
T.
,
Henein, N.
,
Sattler, E.
, and
Schihl, P.
,
2014
, “
Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
94
105
.
16.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,” SAE Paper No. 2009-01-0944.
17.
Manente
,
V.
,
Zander
,
C.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2010
, “
An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency From Idle to Max Load Using Gasoline Partially Premixed Combustion
,”
SAE
Paper No. 2010-01-2198.
18.
Ra
,
Y.
,
Loeper
,
P.
,
Reitz
,
R.
,
Andrie
,
M.
,
Krieger, R.
,
Foster, D.
,
Durrerr, R.
,
Gopalakrishnan, V.
,
Plazas, A.
,
Peterson, R.
, and
Szymkowicz, P.
,
2011
, “
Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime
,”
SAE Int. J. Engines
,
4
(
1
), pp.
1412
1430
.
19.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore, N.
, and
Delhom, J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Paper No. 2015-01-0832.
20.
Won
,
H.
,
Peters
,
N.
,
Pitsch
,
H.
,
Tait
,
N.
, and
Kalghatgi, G.
,
2013
, “
Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine
,”
SAE
Paper No. 2013-01-2539.
21.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
, and
Viollet
,
Y.
,
2012
, “
Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion
,”
SAE
Paper No. 2012-01-0677.
22.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
,
Adomeit
,
P.
,
Rohs, H.
, and
Heuser, B.
,
2013
, “
Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability With EURO6 Engine-Out NOx Emission
,”
SAE Int. J. Engines
,
6
(
1
), pp.
101
119
.
23.
Leermakers
,
C.
,
Bakker
,
P.
,
Somers
,
L.
,
de Goey
,
L.
, and
Johansson
,
B. H.
,
2013
, “
Commercial Naphtha Blends for Partially Premixed Combustion
,”
SAE Int. J. Fuels Lubr.
,
6
(
1
), pp. 199–216.
24.
Sellnau
,
M.
,
Moore
,
W.
,
Sinnamon
,
J.
,
Hoyer
,
K.
,
Foster, M.
, and
Husted, H.
,
2015
, “
GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions
,”
SAE Int. J. Engines
,
8
(
2
), pp.
775
790
.
25.
Kolodziej
,
C.
,
Sellnau
,
M.
,
Cho
,
K.
, and
Cleary
,
D.
,
2016
, “
Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels
,”
SAE Int. J. Engines
,
9
(
2
), pp.
979
1001
.
26.
Badra
,
J.
,
Sim
,
J.
,
Elwardany
,
A.
,
Jaasim
,
M.
,
Viollet
,
Y.
,
Chang
,
J.
,
Amer
,
A.
, and
Im
,
H.
,
2016
, “
Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052202
.
27.
Kodavasal
,
K.
,
Kolodziej
,
C.
,
Ciatti
,
S.
, and
Sibendu
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
28.
Gao
,
T.
,
Divekar
,
P.
,
Asad
,
U.
,
Han
,
X.
,
Reader
,
G.
,
Wang
,
M.
,
Zheng
,
M.
, and
Tjong
,
J.
,
2013
, “
An Enabling Study of Low Temperature Combustion With Ethanol in a Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042203
.
29.
Voice
,
A.
,
Kumar
,
K.
, and
Zhang
,
Y.
,
2016
, “
Effect of Fuel Reactivity on Ignitability and Combustion Phasing in a Heavy-Duty Engine Simulation for Mixing-Controlled and Partially-Premixed Combustion
,”
ASME
Paper No. ICEF2016-9347.
30.
Wickman
,
D.
,
Senecal
,
P.
, and
Reitz
,
R.
, 2001, “
Diesel Engine Combustion Chamber Geometry Optimization Using Genetic Algorithms and Multi-Dimensional Spray and Combustion Modeling
,”
SAE
Paper No. 2001-01-0547.
31.
Diwakar
,
R.
, and
Singh
,
S.
,
2009
, “
Importance of Spray-Bowl Interaction in a DI Diesel Engine Operating Under PCCI Combustion Mode
,”
SAE
Paper No. 2009-01-0711.
32.
Dempsey
,
A.
,
Wang
,
B.
,
Reitz
,
R.
,
Petersen
,
B.
,
Sahoo, D.
, and
Miles, P.
,
2012
, “
Comparison of Quantitative In-Cylinder Equivalence Ratio Measurements With CFD Predictions for a Light Duty Low Temperature Combustion Diesel Engine
,”
SAE Int. J. Engines
,
5
(
2
), pp.
162
184
.
33.
Dempsey
,
A.
, and
Reitz
,
R.
,
2011
, “
Computational Optimization of Reactivity Controlled Compression Ignition in a Heavy-Duty Engine With Ultra Low Compression Ratio
,”
SAE Int. J. Engines
,
4
(
2
), pp.
2222
2239
.
34.
Ra
,
Y.
,
Reitz
,
R.
,
McFarlane
,
J.
, and
Daw
,
C.
,
2009
, “
Effects of Fuel Physical Properties on Diesel Engine Combustion Using Diesel and Bio-Diesel Fuels
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
703
718
.
35.
Pei
,
Y.
,
Shan
,
R.
,
Som
,
S.
,
Lu
,
T.
,
Longman, D.
, and
Davis, M.
,
2014
, “
Global Sensitivity Analysis of a Diesel Engine Simulation With Multi-Target Functions
,”
SAE
Paper No. 2014-01-1117.
36.
Kodavasal
,
J.
,
Pei
,
Y.
,
Harms
,
K.
,
Ciatti
,
S.
,
Wagner, A.
,
Senecal, P.
,
Garcia, M.
, and
Som, S.
,
2016
, “
Global Sensitivity Analysis of a Gasoline Compression Ignition Engine Simulation With Multiple Targets on an IBM Blue Gene/Q Supercomputer
,”
SAE
Paper No. 2016-01-0602.
37.
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Traver, M.
,
Cleary, D.
, and
Som, S.
,
2017
, “
Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis
,”
SAE Int. J. Fuels Lubr.
,
10
(
1
), pp.
56
68
.
38.
Aspen, 2014, “
Aspen HYSYS v8.6—Appendix A: Property Methods and Calculations
,” Aspen Technology, Inc., Bedford, MA.
39.
Kalghatgi
,
G.
,
Babiker
,
H.
, and
Badra
,
J.
,
2015
, “
A Simple Method to Predict Knock Using Toluene, n-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates
,”
SAE Int. J. Engines
,
8
(
2
), pp.
505
519
.
40.
Pei
,
Y.
,
Zhang
,
Y.
,
Kumar
,
P.
,
Traver
,
M.
,
Cleary, D.
,
Amee, M.n.
,
Som, S.
,
Probst, D.
,
Burton, T.
,
Pomraning, E.
, and
Senecal, P.
,
2017
, “
CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization With a Gasoline-Like Fuel
,”
SAE Int. J. Commer. Veh.
,
10
(
2
), pp. 532–546.
41.
Convergent Science, 2014, “
CONVERGE Theory Manual v2.2.0
,” Convergent Science Inc., Madison, WI.
42.
Wang
,
H.
,
Yao
,
M.
,
Yue
,
Z.
,
Jia
,
M.
, and
Reitz
,
R.
,
2015
, “
A Reduced Toluene Reference Fuel Chemical Kinetic Mechanism for Combustion and Polycyclic-Aromatic Hydrocarbon Predictions
,”
Combust. Flame
,
162
(
6
), pp.
2390
2404
.
43.
Kumar
,
P.
,
Zhang
,
Y.
,
Traver
,
M.
, and
Cleary
,
D.
,
2017
, “
Simulation-Guided Air System Design for a Low Reactivity Gasoline-like Fuel Under Partially-Premixed Combustion in a Heavy-Duty Diesel Engine
,”
SAE
Paper No. 2017-01-0751.
44.
Westbrook
,
C.
,
2000
, “
Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1563
1577
.
45.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
,
1997
, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
,
109
(
4
), pp.
599
619
.
46.
Mehl
,
M.
,
Pitz
,
W.
,
Westbrook
,
C.
, and
Curran
,
H.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
47.
Minetti
,
R.
,
Carlier
,
M.
,
Ribaucour
,
M.
,
Therssen
,
E.
, and
Sochet
,
L.
,
1995
, “
A Rapid Compression Machine Investigation of Oxidation and Auto-Ignition of n-Heptane, Measurements and Modeling
,”
Combust. Flame
,
102
(
3
), pp.
298
309
.
48.
Ciezki
,
H.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigation of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.
49.
Higgins
,
B.
,
Mueller
,
C.
, and
Siebers
,
D.
,
1999
, “
Measurements of Fuel Effects on Liquid-Phase Penetration in DI Sprays 1
,”
SAE
Paper No. 1999-01-0519.
50.
Fridriksson
,
H.
,
Sunden
,
B.
,
Hajireza
,
S.
, and
Tuner
,
M.
,
2011
, “
CFD Investigation of Heat Transfer in a Diesel Engine With Diesel and PPC Combustion Modes
,”
SAE
Paper No. 2011-01-1838.
51.
Tuner
,
M.
,
Johansson
,
B.
,
Keller
,
P.
, and
Becker
,
M.
,
2013
, “
Loss Analysis of a HD-PPC Engine With Two-Stage Turbocharging Operating in the European Stationary Cycle
,”
SAE
Paper No. 2013-01-2700.
You do not currently have access to this content.