This study makes energy and exergy analysis of a sample organic Rankine cycle (ORC) with a heat exchanger which produces energy via a geothermal source with a temperature of 140 °C. R600a is preferred as refrigerant to be used in the cycle. The changes in exergy destructions (of irreversibility) and exergy efficiencies in each cycle element are calculated in the analyses made based on the effectiveness of heat exchanger used in cycle and evaporator temperature changing between 60 and 120 °C for fixed pinch point temperature differences in evaporator and condenser. Parameters showing system performance are assessed via second law approach. Effectiveness of heat exchanger and temperature of evaporator are taken into consideration within the scope of this study, and energy and exergy efficiencies of cycle are enhanced maximum 6.87% and 6.21% respectively. Similarly, exergy efficiencies of evaporator, heat exchanger, and condenser are increased 4%, 82%, and 1.57%, respectively, depending on the effectiveness of heat exchanger and temperature of evaporator.

References

References
1.
Heberle
,
F.
, and
Bruggemann
,
D.
,
2015
, “
Thermo-Economic Evaluation of Organic Rankine Cycles for Geothermal Power Generation Using Zeotropic Mixtures
,”
Energies
,
8
(
3
), pp.
2097
2124
.
2.
Liu
,
Q.
,
Shen
,
A. J.
, and
Duan
,
Y. Y.
,
2015
, “
Parametric Optimization and Performance Analyses of Geothermal Organic Rankine Cycles Using R600a/R601a Mixtures as Working Fluids
,”
Appl. Energy
,
148
, pp.
410
420
.
3.
Liu
,
Q.
,
Duan
,
Y. Y.
, and
Yang
,
Z.
,
2014
, “
Effect of Condensation Temperature Glide on the Performance of Organic Rankine Cycles With Zeotropic Mixture Working Fluids
,”
Appl. Energy
,
115
, pp.
394
404
.
4.
Ferrara
,
F.
,
Gimelli
,
A.
, and
Luongo
,
A.
,
2014
, “
Small-Scaled Concentrated Solar Power (CSP) Plant: ORC's Comparison for Different Organic Fluids
,”
Energy Procedia
,
45
, pp.
217
226
.
5.
Wang
,
J.
,
Yan
,
Z.
,
Wang
,
M.
,
Maa
,
S.
, and
Dai
,
Y.
,
2013
, “
Thermodynamic Analysis and Optimization of an (Organic Rankine Cycle) ORC Using Low Grade Heat Source
,”
Energy
,
49
, pp.
356
365
.
6.
Roy
,
J. P.
,
Mishra
,
M. K.
, and
Mishra
,
A.
,
2010
, “
Parametric Optimization and Performance Analysis of a Waste Heat Recovery System Using Organic Rankine Cycle
,”
Energy
,
35
(
12
), pp.
5049
5062
.
7.
Gang
,
P.
,
Jing
,
L.
, and
Jie
,
J.
,
2010
, “
Analysis of Low Temperature Solar Thermal Electric Generation Using Regenerative Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
998
1004
.
8.
Rayegen
,
R.
, and
Tao
,
X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Rankine Cycle (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.
9.
Bertrand
,
F. T.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.
10.
He
,
C.
,
Liu
,
C.
,
Gao
,
H.
,
Xie
,
H.
,
Li
,
Y.
,
Wu
,
S.
, and
Xu
,
J.
,
2012
, “
The Optimal Evaporation Temperature and Working Fluids for Subcritical Organic Rankine Cycle
,”
Energy
,
38
(
1
), pp.
136
143
.
11.
Drescher
,
U.
, and
Bruggemann
,
D.
,
2007
, “
Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
223
228
.
12.
Ergun
,
A.
,
Ozkaymak
,
M.
, and
Kılıcaslan
,
E.
,
2016
, “
Power Generation Applications With Organic Rankine Cycle From Low Temperature Heat Sources
,”
Duzce Univ. J. Sci. Technol.
,
4
(2), pp.
686
696
.
13.
Kaynakli
,
O.
,
Bademlioglu
,
A. H.
,
Yamankaradeniz
,
N.
, and
Yamankaradeniz
,
R.
,
2017
, “
Thermodynamic Analysis of the Organic Rankine Cycle and the Effect of Refrigerant Selection on Cycle Performance
,”
Int. J. Energy Appl. Technol.
,
4
(3), pp.
101
108
.http://dergipark.gov.tr/download/article-file/354540
14.
Pulyaev
,
S.
,
Akgoz
,
O.
, and
Cetin
,
B.
,
2013
, “
Recovery of Waste Heat in Power Plants Using Organic Rankine Cycle
,”
19th National Congress of Thermal Sciences and Technology
, Samsun, Turkey, Sept. 9–12, pp.
978
982
.
15.
Bademlioglu
,
A. H.
,
Kaynakli
,
O.
, and
Yamankaradeniz
,
R.
,
2017
, “
Exergy Analysis of the Organic Rankine Cycle Based on the Pinch Point Temperature Difference
,”
International Conference on Advances in Science
, Istanbul, Turkey, Sept. 13–15, pp.
197
202
.
16.
Ziviani
,
D.
,
Beyene
,
M.
, and
Venturini
,
M.
,
2013
, “
Design, Analysis and Optimization of a Micro-CHP System Based on Organic Rankine Cycle for Ultralow Grade Thermal Energy Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011602
.
17.
Heberle
,
F.
,
Preissinger
,
M.
, and
Bruggemann
,
D.
,
2012
, “
Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles for Low-Enthalpy Geothermal Resources
,”
Renewable Energy
,
37
(
1
), pp.
364
370
.
18.
Li
,
W.
,
Feng
,
X.
,
Yu
,
L. J.
, and
Xu
,
J.
,
2011
, “
Effects of Evaporating Temperature and Internal Heat Exchanger on Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4014
4023
.
19.
Yari
,
M.
,
2009
, “
Performance Analysis of the Different Organic Rankine Cycles (ORCs) Using Dry Fluids
,”
Int. J. Exergy
,
6
(
3
), pp.
323
342
.
20.
Yari
,
M.
,
2010
, “
Exergetic Analysis of Various Types Geothermal Power Plants
,”
Renewable Energy
,
35
(
1
), pp.
112
121
.
21.
Wang
,
Y.
,
Ding
,
X.
,
Tang
,
L.
, and
Weng
,
Y.
,
2016
, “
Effect of Evaporation Temperature on the Performance of Organic Rankine Cycle in Near-Critical Condition
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032001
.
22.
Vidhi
,
R.
,
Kuravi
,
S.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Sabau
,
A. S.
,
2013
, “
Organic Fluids in a Supercritical Rankine Cycle for Low Temperature Power Generation
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042002
.
23.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022402
.
24.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
125
130
.
25.
Guo
,
C.
,
Du
,
X.
,
Yang
,
L.
, and
Yang
,
Y.
,
2014
, “
Performance Analysis of Organic Rankine Cycle Based on Location of Heat Transfer Pinch Point in Evaporator
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
176
186
.
26.
Deethayat
,
T.
,
Kiatsiriroat
,
T.
, and
Thawonngamyingsakul
,
C.
,
2015
, “
Performance Analysis of an Organic Rankine Cycle With Internal Heat Exchanger Having Zeotropic Working Fluid
,”
Case Stud. Therm. Eng.
,
6
, pp.
155
161
.
27.
Liu
,
C.
,
He
,
C.
,
Gao
,
H.
,
Xu
,
X.
, and
Xu
,
J.
,
2012
, “
The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery
,”
Entropy
,
14
(
3
), pp.
491
504
.
28.
Li
,
T.
,
Fu
,
W.
, and
Zhu
,
J.
,
2014
, “
An Integrated Optimization for Organic Rankine Cycle Based on Entransy Theory and Thermodynamics
,”
Energy
,
72
, pp.
561
5731
.
You do not currently have access to this content.