Salt gradient solar ponds are the ponds in which due to existence of saline and salt gradient layers, lower layers are denser and avoid the natural convection phenomenon to occur so that solar radiation energy can be stored in the lowest zone. In this study, one-dimensional (1D) and two-dimensional (2D) numerical approaches have been implemented to simulate unsteady buoyancy-driven flow of solar ponds. In 1D method, the pond has been investigated in terms of the layers thicknesses so that the variation of temperature is calculated by energy conservation equation. The formulized radiation term was used as energy source term in energy equation. The results of 1D approach were validated with an experimental study and then optimization was carried out to determine the maximum thermal efficiency for an interval of layers height. Since the stability of the solar pond cannot be determined by 1D simulation, a 2D approach was considered to show the stability for different nonconvective zone (NCZ) heights and different salt gradients. In 2D study, in order to investigate hydrodynamic and thermal behavior of saltwater fluid, a numerical approach was used to simulate temperature gradients throughout the pond. The results of 2D numerical method are validated with an experimental data. The effect of linear and nonlinear salt gradient was considered.

References

References
1.
Derakhshan
,
S.
, and
Kasaeian
,
N.
,
2014
, “
Optimization, Numerical and Experimental Study of a Propeller Pump as Turbine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012005
.
2.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.
3.
Derakhshan
,
S.
, and
Yazdani
,
A.
,
2016
, “
Modeling of a Refrigerator in Disaster Vehicle, Using Solar Energy and Engine Exhaust Gases Heat
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052008
.
4.
Angeli
,
C.
, and
Leonardi
,
E.
,
2004
, “
A One-Dimensional Numerical Study of the Salt Diffusion in a Salinity-Gradient Solar Pond
,”
Int. J. Heat Mass Transfer
,
47
(
1
), pp.
1
10
.
5.
Kalecsinsky
,
A. V.
,
1902
, “
Ueber die ungarischen warmen und heissen Kochsalzseen als natürliche Wärmeaccumulatoren, sowie über die Herstellung von warmen Salzseen und Wärmeaccumulatoren
,”
Ann. D. Phys.
,
7
(
4
), pp.
408
416
.
6.
Tabor
,
H.
,
1959
, “
Solar Collector Developments in Israel
,”
Sol. Energy
,
3
(
3
), pp.
8
9
.
7.
Weinberger
,
H.
,
1964
, “
The Physics of the Solar Pond
,”
Sol. Energy
,
8
(
2
), pp.
45
56
.
8.
Wang
,
Y. F.
, and
Akbarzadeh
,
A.
,
1983
, “
A Parametric Study on Solar Ponds
,”
Sol. Energy
,
30
(
6
), pp.
555
562
.
9.
Tsilingiris
,
P. T.
,
1994
, “
Steady-State Modeling Limitations in Solar Pond Design
,”
Sol. Energy
,
53
(
1
), pp.
73
79
.
10.
Alagao
,
F. B.
,
1996
, “
Simulation of the Transient Behavior of a Closed-Cycle Salt-Gradient Solar Pond
,”
Sol. Energy
,
56
(
3
), pp.
245
260
.
11.
El-refaee
,
M. M.
,
Mansour
,
R. R.
, and
Al-juwayhel
,
F.
,
1996
, “
Transient Performance of a Two-Dimensional Salt Gradient Solar Pond—A Numerical Study
,”
Int. J. Energy Res.
,
20
(
8
), pp.
713
731
.
12.
Badran
,
A. A.
,
Jubran
,
B. A.
,
Qasem
,
E. M.
, and
Hamdan
,
M. A.
,
1997
, “Numerical Model for the Behaviour of a Salt-Gradient Solar-Pond Greenhouse-Heating System,”
Appl. Energy
,
58
(
1
), pp.
51
72
.
13.
Jaefarzadeh
,
M. R.
,
2004
, “
Thermal Behavior of a Small Salinity-Gradient Solar Pond With Wall Shading Effect
,”
Sol. Energy
,
77
(
3
), pp.
281
290
.
14.
Ben Mansour
,
R.
,
Nguyen
,
C. T.
, and
Galanis
,
N.
,
2004
, “
Numerical Study of Transient Heat and Mass Transfer and Stability in a Salt-Gradient Solar Pond
,”
Int. J. Therm. Sci.
,
43
(
8
), pp.
779
790
.
15.
Kurt
,
H.
,
Ozkaymak
,
M.
, and
Binark
,
A. K.
,
2006
, “
Experimental and Numerical Analysis of Sodium-Carbonate Salt Gradient Solar-Pond Performance Under Simulated Solar-Radiation
,”
Appl. Energy
,
83
(
4
), pp.
324
342
.
16.
Giestas
,
M. C.
,
Pina
,
H. L.
,
Milhazes
,
J. P.
, and
Tavares
,
C.
,
2009
, “
Solar Pond Modeling With Density and Viscosity Dependent on Temperature and Salinity
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2849
2857
.
17.
Hammami
,
M.
,
Mseddi
,
M.
, and
Baccar
,
M.
,
2007
, “
Transient Natural Convection in an Enclosure With Vertical Solutal Gradients
,”
Sol. Energy
,
81
(
4
), pp.
476
487
.
18.
Wu
,
H.
,
Tang
,
R.
,
Li
,
Z.
, and
Zhong
,
H.
,
2009
, “
A Mathematical Procedure to Estimate Solar Absorptance of Shallow Water Ponds
,”
Energy Convers. Manage.
,
50
(
7
), pp.
1828
1833
.
19.
Sakhrieh
,
A.
, and
Al-Salaymeh
,
A.
,
2013
, “
Experimental and Numerical Investigations of Salt Gradient Solar Pond Under Jordanian Climate Conditions
,”
Energy Convers. Manage.
,
65
, pp.
725
728
.
20.
Giestas
,
M. C.
,
Milhazes
,
J. P.
, and
Pina
,
H. L.
,
2014
, “
Numerical Modeling of Solar Ponds
,”
Energy Procedia
,
57
, pp.
2416
2425
.
21.
Suárez
,
F.
,
Ruskowitz
,
J. A.
,
Childress
,
A. E.
, and
Tyler
,
S. W.
,
2014
, “
Understanding the Expected Performance of Large-Scale Solar Ponds From Laboratory-Scale Observations and Numerical Modeling
,”
Appl. Energy
,
1
, pp.
1
10
.
22.
Berkani
,
M.
,
Sissaoui
,
H.
,
Abdelli
,
A.
,
Kermiche
,
M.
, and
Barker-Read
,
G.
,
2015
, “
Comparison of Three Solar Ponds With Different Salts Through Bi-Dimensional Modeling
,”
Sol. Energy
,
116
, pp.
56
68
.
23.
Hongsheng
,
L.
,
Linsong
,
J.
,
Dan
,
W.
, and
Wence
,
S.
,
2015
, “
Experiment and Simulation Study of a Trapezoidal Salt Gradient Solar Pond
,”
Sol. Energy
,
122
, pp.
1225
1234
.
24.
Boudhiaf
,
R.
,
2015
, “
Numerical Temperature and Concentration Distributions in an Insulated Salinity Gradient Solar Pond
,”
Renewables: Wind, Water, Sol.
, 2, p. 10.
25.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari
,
N.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041201
.
26.
Farahbod
,
F.
, and
Farahmand
,
S.
,
2014
, “
Experimental Study of Solar-Powered Desalination Pond as Second Stage in Proposed Zero Discharge Desalination Process
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031202
.
27.
Boudhiaf
,
B.
,
Ben Moussa
,
A.
, and
Baccar
,
B.
,
2012
, “
A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond
,”
J. Energies
, 5(10), pp. 3986–4007.
28.
Akbarzadeh
,
A.
, and
Ahmadi
,
G.
,
1980
, “
Computer Simulation of the Performance of a Solar Pond in the Southern Part of Iran
,”
Sol. Energy
,
24
(
2
), pp.
143
151
.
29.
Bejan
,
A.
,
1984
,
Convection Heat Transfer
,
1st ed.
,
Wiley
, Hoboken, NJ.
30.
Karim
,
C.
,
Jomâa
,
S. M.
, and
Akbarzadeh
,
A.
,
2011
, “
A Laboratory Experimental Study of Mixing the Solar Pond Gradient Zone
,”
Sol. Energy
,
85
(
2
), pp.
404
417
.
You do not currently have access to this content.