The desire to increase power production through renewable sources introduces a number of problems due to their inherent intermittency. One solution is to incorporate energy storage systems as a means of managing the intermittent energy and increasing the utilization of renewable sources. A novel hybrid thermal and compressed air energy storage (HT-CAES) system is presented which mitigates the shortcomings of the otherwise attractive conventional compressed air energy storage (CAES) systems and its derivatives, such as strict geological locations, low energy density, and the production of greenhouse gas emissions. The HT-CAES system is investigated, and the thermodynamic efficiency limits within which it operates have been drawn. The thermodynamic models considered assume a constant pressure cavern. It is shown that under this assumption the cavern acts just as a delay time in the operation of the plant, whereas an adiabatic constant volume cavern changes the quality of energy through the cavern. The efficiency of the HT-CAES system is compared with its Brayton cycle counterpart, in the case of pure thermal energy storage (TES). It is shown that the efficiency of the HT-CAES plant is generally not bound by the Carnot efficiency and always higher than that of the Brayton cycle, except for when the heat losses following compression rise above a critical level. The results of this paper demonstrate that the HT-CAES system has the potential of increasing the efficiency of a pure TES system executed through a Brayton cycle at the expense of an air storage medium.

References

References
1.
Can
,
S.
,
Bie
,
Z.
, and
Zhang
,
Z.
,
2016
, “
A New Framework for the Wind Power Curtailment and Absorption Evaluation
,”
Int. Trans. Electr. Energy Syst.
,
26
(
10
), pp.
2134
2147
.
2.
Li
,
C. B.
,
Shi
,
H. Q.
,
Cao
,
Y. J.
,
Wang, J.
,
Kuang, Y.
,
Tan, Y.
, and
Wei, J.
,
2015
, “
Comprehensive Review of Renewable Energy Curtailment and Avoidance: A Specific Example in China
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
1067
1079
.
3.
Zou
,
J.
,
Rahman
,
S.
, and
Lai
,
X.
,
2015
, “
Mitigation of Wind Output Curtailment by Coordinating With Pumped Storage and Increasing Transmission Capacity
,”
IEEE Power and Energy Society General Meeting
, Denver, CO, July 26–30, pp. 1–5.
4.
Waite
,
M.
, and
Modi
,
V.
,
2016
, “
Modeling Wind Power Curtailment With Increased Capacity in a Regional Electricity Grid Supplying a Dense Urban Demand
,”
Appl. Energy
,
183
, pp.
299
317
.
5.
Wang
,
C. X.
,
2015
, “
Study of Unit Commitment Strategies in Combating Wind Curtailment in China
,”
Fourth International Conference on Energy and Environmental Protection (ICEEP)
, Shenzhen, China, June 2–4, pp.
1137
1140
.
6.
Fan
,
X. C.
,
Wang
,
W. Q.
,
Shi
,
R. J.
, and
Li
,
F. T.
,
2015
, “
Analysis and Countermeasures of Wind Power Curtailment in China
,”
Renewable Sustainable Energy Rev.
,
52
, pp.
1429
1436
.
7.
Gunter
,
N.
, and
Marinopoulos
,
A.
,
2016
, “
Energy Storage for Grid Services and Applications: Classification, Market Review, Metrics, and Methodology for Evaluation of Deployment Cases
,”
J. Energy Storage
,
8
, pp.
226
234
.
8.
Zakeri
,
B.
, and
Syri
,
S.
,
2015
, “
Electrical Energy Storage Systems: A Comparative Life Cycle Cost Analysis
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
569
596
.
9.
Zidar
,
M.
,
Capuder
,
T.
, and
Skrlec
,
D.
,
2016
, “
Review of Energy Storage Allocation in Power Distribution Networks: Applications, Methods and Future Research
,”
IET Gener. Transm. Distrib.
,
10
(
3
), pp.
645
652
.
10.
Upendra Roy
,
B. P.
, and
Rengarajan
,
N.
,
2017
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
.
11.
Koytsoumpa
,
E.-I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjornsson
,
O.
,
Tran
,
K. C.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
12.
Hameer
,
S.
, and
van Niekerk
,
J. L.
,
2015
, “
A Review of Large-Scale Electrical Energy Storage
,”
Int. J. Energy Res.
,
39
(
9
), pp.
1179
1195
.
13.
Freeman
,
E.
,
Occello
,
D.
, and
Barnes
,
F.
,
2016
, “
Energy Storage for Electrical Systems in the USA
,”
Aims Energy
,
4
(
6
), pp.
856
875
.
14.
Obi
,
M.
,
Jensen
,
S. M.
,
Ferris
,
J. B.
, and
Bass
,
R. B.
,
2017
, “
Calculation of Levelized Costs of Electricity for Various Electrical Energy Storage Systems
,”
Renewable Sustainable Energy Rev.
,
67
, pp.
908
920
.
15.
Herrmann
,
S.
,
Kahlert
,
S.
,
Wuerth
,
M.
, and
Spliethoff
,
H.
,
2017
, “
Thermo-Economic Evaluation of Novel Flexible CAES/CCPP Concept
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011902
.
16.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
.
17.
Kushnir
,
R.
,
Ullmann
,
A.
, and
Dayan
,
A.
,
2012
, “
Thermodynamic Models for the Temperature and Pressure Variations Within Adiabatic Caverns of Compressed Air Energy Storage Plants
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
021901
.
18.
Wolf
,
D.
, and
Budt
,
M.
,
2014
, “
LTA-CAES—A Low-Temperature Approach to Adiabatic Compressed Air Energy Storage
,”
Appl. Energy
,
125
, pp.
158
164
.
19.
Peng
,
H.
,
Yang
,
Y.
,
Li
,
R.
, and
Ling
,
X.
,
2016
, “
Thermodynamic Analysis of an Improved Adiabatic Compressed Air Energy Storage System
,”
Appl. Energy
,
183
, pp.
1361
1373
.
20.
Odukomaiya
,
A.
,
Abu-Heiba
,
A.
,
Gluesenkamp
,
K. R.
,
Abdelaziz
,
O.
,
Jackson
,
R. K.
,
Daniel
,
C.
,
Graham
,
S.
, and
Momen
,
A. M.
,
2016
, “
Thermal Analysis of Near-Isothermal Compressed Gas Energy Storage System
,”
Appl. Energy
,
179
, pp.
948
960
.
21.
Venkataramani
,
G.
,
Parankusam
,
P.
,
Ramalingam
,
V.
, and
Wang
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage—A Pathway for Smart Grid and Polygeneration
,”
Renewable Sustainable Energy Rev.
,
62
, pp.
895
907
.
22.
Garvey
,
S. D.
, and
Pimm
,
A.
,
2016
, “
Chapter 5—Compressed Air Energy Storage
,”
Storing Energy
,
T. M.
Letcher
, ed.,
Elsevier
,
Oxford, UK
, pp.
87
111
.
23.
Kilic
,
M.
, and
Mutlu
,
M.
,
2016
, “
A Novel Design of a Compressed Air Storage System With Liquid Pistons
,”
Bulgarian Chem. Commun.
,
48
, pp.
318
324
.http://www.bcc.bas.bg/BCC_Volumes/Volume_48_Special_E_2016/Special%20Issue%20E/Statii/Pages318-324.pdf
24.
Li
,
P. Y.
, and
Saadat
,
M.
,
2016
, “
An Approach to Reduce the Flow Requirement for a Liquid Piston Near-Isothermal Aircompressor/Expander in a Compressed Air Energy Storage System
,”
IET Renewable Power Gener.
,
10
(
10
), pp.
1506
1514
.
25.
Qin
,
C.
, and
Loth
,
E.
,
2014
, “
Liquid Piston Compression Efficiency With Droplet Heat Transfer
,”
Appl. Energy
,
114
, pp.
539
550
.
26.
Buhagiar
,
D.
, and
Sant
,
T.
,
2017
, “
Modelling of a Novel Hydro-Pneumatic Accumulator for Large-Scale Offshore Energy Storage Applications
,”
J. Energy Storage
,
14
(Pt. 2), pp. 283–294.
27.
Budt
,
M.
,
Wolf
,
D.
,
Span
,
R.
, and
Yan
,
J.
,
2016
, “
A Review on Compressed Air Energy Storage: Basic Principles, Past Milestones and Recent Developments
,”
Appl. Energy
,
170
, pp.
250
268
.
28.
Qin
,
C.
, and
Loth
,
E.
,
2016
, “
Simulation of Spray Direct Injection for Compressed Air Energy Storage
,”
Appl. Therm. Eng.
,
95
, pp.
24
34
.
29.
Zhang, C.
,
Yan, B.
,
Wieberdink, J.
,
Li, P. Y.
,
Van De Ven, J. D.
,
Loth, E.
, and
Simon, T. W.
, 2014, “
Thermal Analysis of a Compressor for Application to Compressed Air Energy Storage
,”
Appl. Thermal Eng.
,
73
(2), pp. 1402–1411.
30.
Mohamed, E. F. A. F.
, 2005,
Uncooled Compressed Air Storage for Balancing of Fluctuating Wind Energy
, Clausthal University of Technology, Clausthal-Zellerfeld, Germany.
31.
Szablowski
,
L.
,
Krawczyk
,
P.
,
Badyda
,
K.
,
Karellas
,
S.
,
Kakaras
,
E.
, and
Bujalski
,
W.
,
2017
, “
Energy and Exergy Analysis of Adiabatic Compressed Air Energy Storage System
,”
Energy
,
138
, pp.
12
18
.
32.
Baghaei
,
L. R.
,
Villanava
,
I.
,
Houssainy
,
S.
,
Anderson
,
K.
, and
Kavehpour
,
H. P.
,
2016
, “
Design of a Modular Solid-Based Thermal Energy Storage for a Hybrid Compressed Air Energy Storage System
,”
ASME
Paper No. ES2016-59160.
33.
Houssainy
,
S.
,
Baghaei Lakeh
,
R.
, and
Kavehpour
,
H. P.
,
2016
, “
A Thermodynamic Model of High Temperature Hybrid Compressed Air Energy Storage System for Grid Storage
,”
ASME
Paper No. ES2016-59431.
34.
Ip
,
P. P.
,
Houssainy
,
S.
, and
Kavehpour
,
H. P.
,
2017
, “
Modeling of a Low Cost Thermal Energy Storage System to Enhance Generation From Small Hydropower Systems
,”
ASME
Paper No. POWER-ICOPE2017-3684.
35.
Houssainy
,
S.
,
Janbozorgi
,
M.
,
Ip
,
P.
, and
Kavehpour
,
P.
,
2017
, “
Thermodynamic Analysis of a High Temperature Hybrid Compressed Air Energy Storage (HTH-CAES) System
,”
Renewable Energy
,
115
, pp. 1043–1054.
36.
Luo
,
X.
,
Wang
,
J. H.
,
Krupke
,
C.
,
Wang
,
Y.
,
Sheng
,
Y.
,
Li
,
J.
,
Xu
,
Y. J.
,
Wang
,
D.
,
Miao
,
S. H.
, and
Chen
,
H. S.
,
2016
, “
Modelling Study, Efficiency Analysis and Optimisation of Large-Scale Adiabatic Compressed Air Energy Storage Systems With Low-Temperature Thermal Storage
,”
Appl. Energy
,
162
, pp.
589
600
.
37.
Cárdenas
,
B.
,
Pimm
,
A. J.
,
Kantharaj
,
B.
,
Simpson
,
M. C.
,
Garvey
,
J. A.
, and
Garvey
,
S. D.
,
2017
, “
Lowering the Cost of Large-Scale Energy Storage: High Temperature Adiabatic Compressed Air Energy Storage
,”
Propul. Power Res.
,
6
(
2
), pp.
126
133
.
38.
de Biasi
,
V.
,
2009
, “
Fundamental Analyses to Optimize Adiabatic CAES Plant Efficiencies
,”
Gas Turbine World
,
39
(5), p.
26e28
.https://www.yumpu.com/en/document/fullscreen/7310089/fundamental-analyses-to-optimize-adiabatic-caes-plant-efficiencies
39.
Barbour
,
E.
,
Mignard
,
D.
,
Ding
,
Y.
, and
Li
,
Y.
,
2015
, “
Adiabatic Compressed Air Energy Storage With Packed Bed Thermal Energy Storage
,”
Appl. Energy
,
155
, pp.
804
–8
15
.
40.
Dreißigacker
,
V.
,
Zunft
,
S.
, and
Müller-Steinhagen
,
H.
,
2013
, “
A Thermo-Mechanical Model of Packed-Bed Storage and Experimental Validation
,”
Appl. Energy
,
111
, pp.
1120
–112
5
.
41.
Kavehpour, H.
,
Aryafar, P.
,
Thacker, H. A.
,
Janbozorgi, M.
,
Houssainy, S.
, and
Ismail, W.
, 2017, “
Low-Cost Hybrid Energy Storage System
,” The Regents of the University of California, Oakland, CA, Publication No.
WO2017044658
.https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017044658&recNum=200&docAn=US2016050819&queryString=solar&maxRec=68576
42.
Yang
,
Z.
,
Wang
,
Z.
,
Ran
,
P.
,
Li
,
Z.
, and
Ni
,
W.
,
2014
, “
Thermodynamic Analysis of a Hybrid Thermal-Compressed Air Energy Storage System for the Integration of Wind Power
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
519
527
.
43.
Ibrahim
,
H.
,
Ilinca
,
A.
, and
Perron
,
J.
,
2008
, “
Energy Storage Systems Characteristics and Comparisons
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1221
1250
.
44.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
Boettner, D. D.
, and
Bailey, M. B.
,
2014
,
Fundamentals of Engineering Thermodynamics
, 8th ed.,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.