Bundled wind–thermal generation system (BWTGS) is an effective way to utilize remote large–scale wind power. The optimal generation maintenance schedule (GMS) for BWTGS is not only helpful to improve the system reliability level but also useful to enhance the system economic efficiency and extend the lifetime of components. This paper presents a model to optimize the GMS for BWTGS. The probabilistic production simulation technique is employed to calculate the system costs, and a sequential probabilistic method is utilized to capture the sequential and stochastic nature of wind power. A hybrid optimization algorithm (HOA) based on the simulated annealing (SA) and multipopulation parallel genetic algorithm (GA) is developed to solve the proposed model. Case studies demonstrate the effectiveness of this proposed model. Effects of the reliability deterioration of thermal generating units (TGUs) and the pattern of BWTGS transmission power are also investigated.

References

References
1.
Sunden
,
B.
, and
Wu
,
Z.
,
2017
, “
On Heat Transfer Issues for Wind Energy Systems
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051201
.
2.
Okumus
,
I.
, and
Dinler
,
A.
,
2016
, “
Current Status of Wind Energy Forecasting and a Hybrid Method for Hourly Predictions
,”
Energy Convers. Manage.
,
123
, pp.
362
371
.
3.
NEA of China,
2016
, “
The 13th Five-Year Plan for Wind Power Development
,” National Energy Administration, Beijing, China, accessed Aug. 14, 2017, http://www.nea.gov.cn/135867633_14804706797341n.pdf (in Chinese).
4.
Zhang
,
Y.
,
Tang
,
N.
,
Niu
,
Y.
, and
Du
,
X.
,
2016
, “
Wind Energy Rejection in China: Current Status, Reasons and Perspectives
,”
Renewable Sustainable Energy Rev.
,
66
, pp.
322
344
.
5.
Xie
,
K.
,
Dong
,
J.
,
Tai
,
H.-M.
,
Hu
,
B.
, and
He
,
H.
,
2015
, “
Optimal Planning of HVDC-Based Bundled Wind–Thermal Generation and Transmission System
,”
Energy Convers. Manage.
,
115
, pp.
71
79
.
6.
Ni
,
M.
, and
Yang
,
Z.
,
2012
, “
By Leaps and Bounds: Lessons Learned From Renewable Energy Growth in China
,”
IEEE Power Energy Mag.
,
10
(
2
) pp.
37
43
.
7.
Xie
,
K.
,
Dong
,
J.
,
Singh
,
C.
, and
Hu
,
B.
,
2016
, “
Optimal Capacity and Type Planning of Generating Units in a Bundled Wind–Thermal Generation System
,”
Appl. Energy
,
164
, pp.
200
210
.
8.
Chen
,
D.
,
Ma
,
S.
,
Song
,
Y.
,
Wang
,
N.
,
Fang
,
P.
, and
Ren
,
J.
,
2014
, “
Research on Transient Stability Under HVDC Block Fault in Wind-Thermal-Bundled Power Base Transmitted by AC/DC System
,”
International Conference on Power System Technology
(
POWERCON
), Chengdu, China, Oct. 20–22, pp.
2884
2890
.
9.
Dopazo
,
J. F.
, and
Merrill
,
H. M.
,
1975
, “
Optimal Generator Maintenance Scheduling Using Integer Programming
,”
IEEE Trans. Power Appar. Syst.
,
94
(
5
), pp.
1537
1545
.
10.
Yellen
,
J.
,
Al-Khamia
,
T.
,
Vanurl
,
S.
, and
Lunonidi
,
L.
,
1992
, “
A Decomposition Approach to Unit Maintenance Scheduling
,”
IEEE Trans. Power Syst.
,
7
(
2
), pp.
726
733
.
11.
Kim
,
J.
, and
Geem
,
Z.
,
2015
, “
Optimal Scheduling for Maintenance Period of Generating Units Using a Hybrid Scatter-Genetic Algorithm
,”
IET Gener. Transm. Distrib.
,
9
(
1
) pp.
22
30
.
12.
Schlünz
,
E.
, and
Vuuren
,
J.
,
2013
, “
An Investigation Into the Effectiveness of Simulated Annealing as a Solution Approach for the Generator Maintenance Scheduling Problem
,”
Int. J. Electr. Power Energy Syst.
,
53
, pp.
166
174
.
13.
Perez-Canto
,
S.
, and
Rubio-Romero
,
J.
,
2013
, “
A Model for the Preventive Maintenance Scheduling of Power Plants Including Wind Farms
,”
Reliab. Eng. Syst. Saf.
,
119
, pp.
67
75
.
14.
Ji
,
G.
,
Wu
,
W.
, and
Zhang
,
B.
,
2016
, “
Robust Generation Maintenance Scheduling Considering Wind Power and Forced Outages
,”
IET Renewable Power Gener.
10
(
5
) pp.
634
641
.
15.
Dong
,
J.
,
Xie
,
K.
, and
Hu
,
B.
,
2016
, “
Optimal Planning of Bundled Wind-Thermal Generation Systems: A Case Study of China
,”
J. Renewable Sustainable Energy
,
8
(
1
) p.
013308
.
16.
Billinton
,
R.
, and
Chowdhury
,
A. A.
,
1992
, “
Incorporation of Wind Energy Conversion Systems in Conventional Generating Capacity Adequacy Assessment
,”
IEE Proc.-C
,
139
(
1
) pp.
47
56
.
17.
Atwa
,
Y.
,
El-Saadany
,
E.
,
Salama
,
M.
, and
Seethapathy
,
R.
,
2010
, “
Optimal Renewable Resources Mix for Distribution System Energy Loss Minimization
,”
IEEE Trans. Power Syst.
,
25
(
1
), pp.
360
370
.
18.
Billinton
,
R.
, and
Oteng-Adjei
,
J.
,
1991
, “
Utilization of Interrupted Energy Assessment Rates in Generation and Transmission System Planning
,”
IEEE Trans. Power Syst.
,
6
(
3
) pp.
1245
1253
.
19.
Yamayee
,
Z.
,
Sidenblad
,
K.
, and
Yoshimura
,
M.
,
1983
, “
A Computationally Efficient Optimal Maintenance Scheduling Method
,”
IEEE Trans. Power Appar. Syst.
,
102
(
2
), pp.
330
338
.
20.
Feng
,
C.
,
Wang
,
X.
, and
Li
,
F.
,
2009
, “
Optimal Maintenance Scheduling of Power Producers Considering Unexpected Unit Failure
,”
IET Gener. Transm. Distrib.
,
3
(
5
), pp.
460
471
.
21.
Manickavasagam
,
M.
,
Anjos
,
M.
, and
Rosehart
,
W.
,
2015
, “
Sensitivity-Based Chance-Constrained Generation Expansion Planning
,”
Electr. Power Syst. Res.
,
127
, pp.
32
40
.
22.
Zeng
,
R.
,
Li
,
H.
,
Liu
,
L.
,
Zhang
,
X.
, and
Zhang
,
G.
,
2015
, “
A Novel Method Based on Multi-Population Genetic Algorithm for CCHP–GSHP Coupling System Optimization
,”
Energy Convers. Manage.
,
105
, pp.
1138
1148
.
23.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
You do not currently have access to this content.