Mathematical formulations have been proposed and verified to determine dynamic dispersion coefficients for solutes flowing in a circular tube with fully developed laminar flow under different source conditions. Both the moment analysis method and the Green's function are used to derive mathematical formulations, while the three-dimensional (3D) random walk particle tracking (RWPT) algorithm in a Cartesian coordinate system has been modified to describe solute flow behavior. The newly proposed formulations have been verified to determine dynamic dispersion coefficients of solutes by achieving excellent agreements with both the RWPT results and analytical solutions. The differences among transverse average concentration using the Taylor model with and without dynamic dispersion coefficient and center-of-mass velocity are significant at early times but indistinguishable when dimensionless time (tD) approaches 0.5. Furthermore, compared to solutes flowing in a 3D circular tube, dispersion coefficients of solutes flowing in a two-dimensional (2D) parallel-plate fracture are always larger for a uniform planar source; however, this is not always true for a point source. Solute dispersion in porous media represented by the tube-bundle model is greatly affected by pore-size distribution and increases as standard deviation of pore-size distribution (σ) increases across the full-time scale.

References

References
1.
Doshi
,
M. R.
,
Daiya
,
P. M.
, and
Gill
,
W. N.
,
1978
, “
Three Dimensional Laminar Dispersion in Open and Closed Rectangular Conduits
,”
Chem. Eng. Sci.
,
33
(
7
), pp.
795
804
.
2.
Chitose
,
K.
,
Okamoto
,
A.
,
Takeno
,
K.
,
Hayashi
,
K.
, and
Hishida
,
M.
,
2002
, “
Analysis of a Large Scale Liquid Hydrogen Dispersion Using the Multi-Phase Hydrodynamics Analysis Code (CHAMPAGNE)
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
283
289
.
3.
Call
,
F. W.
,
1998
, “
Dispersion—An Entropy Generator of Diffusion
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
149
153
.
4.
Dullien
,
F. A. L.
,
1992
,
Porous Media: Fluid Transport and Pore Structure
,
2nd ed.
,
Academic Press
,
San Diego, CA
.
5.
Wu
,
Z.
, and
Chen
,
G. Q.
,
2014
, “
Approach to Transverse Uniformity of Concentration Distribution of a Solute in a Solvent Flowing Along a Straight Pipe
,”
J. Fluid Mech.
,
740
, pp.
196
213
.
6.
Du
,
X. D.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2017
, “
Investigation of CO2–CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012909
.
7.
Xiao
,
B.
,
Jiang
,
T.
, and
Zhang
,
S.
,
2017
, “
Novel Nanocomposite Fiber-Laden Viscoelastic Fracturing Fluid for Coal Bed Methane Reservoir Stimulation
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022906
.
8.
Zhou
,
D.
, and
Yang
,
D.
,
2017
, “
Scaling Criteria for Waterflooding and Immiscible CO2 Flooding in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022909
.
9.
Maini
,
B. B.
,
Ionescu
,
E.
, and
Batycky
,
J. P.
,
1986
, “
Miscible Displacement of Residual Oil-Effect of Wettability on Dispersion in Porous Media
,”
J. Can. Pet. Technol.
,
25
(
3
), pp.
36
41
.
10.
Solano
,
R.
,
Johns
,
R. T.
, and
Lake
,
L. W.
,
2001
, “
Impact of Reservoir Mixing on Recovery in Enriched-Gas Drives Above the Minimum Miscibility Enrichment
,”
SPE Reservoir Eval. Eng.
,
4
(
5
), pp.
358
365
.
11.
Johns
,
R. T.
,
Sah
,
P.
, and
Solano
,
R.
,
2002
, “
Effect of Dispersion on Local Displacement Efficiency for Multicomponent Enriched-Gas Floods Above the Minimum Miscibility Enrichment
,”
SPE Reservoir Eval. Eng.
,
5
(
1
), pp.
4
10
.
12.
Garmeh
,
G.
, and
Johns
,
R. T.
,
2010
, “
Upscaling of Miscible Floods in Heterogeneous Reservoirs Considering Reservoir Mixing
,”
SPE Reservoir Eval. Eng.
,
13
(
5
), pp.
747
763
.
13.
Dahle
,
H. K.
,
Celia
,
M. A.
, and
Hassanizadeh
,
S. M.
,
2005
, “
Bundle-of-Tubes Model for Calculating Dynamic Effects in the Capillary-Pressure-Saturation Relationship
,”
Transp. Porous Media
,
58
(
1
), pp.
5
22
.
14.
Silebi
,
C. A.
, and
Dosramos
,
J. G.
,
1989
, “
Axial Dispersion of Submicron Particles in Capillary Hydrodynamic Fractionation
,”
Am. Inst. Chem. Eng. J.
,
35
(
8
), pp.
1351
1364
.
15.
Taylor
,
G.
,
1953
, “
Dispersion of Soluble Matter in Solvent Flowing Slowly Through a Tube
,”
Proc. R. Soc. London A
,
219
(
1137
), pp.
186
203
.
16.
Bailey
,
H. R.
, and
Gogarty
,
W. B.
,
1962
, “
Numerical and Experimental Results on the Dispersion of a Solute in a Fluid in Laminar Flow Through a Tube
,”
Proc. R. Soc. London A
,
269
(
1338
), pp.
352
367
.
17.
Aris
,
R.
,
1956
, “
On the Dispersion of a Solute in a Fluid Lowing Through a Tube
,”
Proc. R. Soc. London A
,
235
(
1200
), pp.
67
77
.
18.
Gill
,
W. N.
, and
Sankarasubramanian
,
R.
,
1970
, “
Exact Analysis of Unsteady Convective Diffusion
,”
Proc. R. Soc. London A
,
316
(
1526
), pp.
341
350
.
19.
Gill
,
W. N.
, and
Sankarasubramanian
,
R.
,
1971
, “
Dispersion of a Non-Uniform Slug in Time-Dependent Flow
,”
Proc. R. Soc. London A
,
322
(
1548
), pp.
101
117
.
20.
Barton
,
N. G.
,
1983
, “
On the Method of Moments for Solute Dispersion
,”
J. Fluid Mech.
,
126
, pp.
205
218
.
21.
James
,
S. C.
, and
Chrysikopoulos
,
C. V.
,
2003
, “
Effective Velocity and Effective Dispersion Coefficient for Finite-Sized Particles Flowing in a Uniform Fracture
,”
J. Colloid Interface Sci.
,
263
(
1
), pp.
288
295
.
22.
Ekambara
,
K.
, and
Joshi
,
J. B.
,
2004
, “
Axial Mixing in Laminar Pipe Flows
,”
Chem. Eng. Sci.
,
59
(
18
), pp.
3929
3944
.
23.
Meng
,
X.
, and
Yang
,
D.
,
2017
, “
Determination of Dynamic Dispersion Coefficients for Passive and Reactive Particles Flowing in a Circular Tube
,”
Colloids Surf. A
,
524
, pp.
96
110
.
24.
Horne
,
R. N.
, and
Rodriguez
,
F.
,
1983
, “
Dispersion in Tracer Flow in Fractured Geothermal Systems
,”
Geophys. Res. Lett.
,
10
(
4
), pp.
289
292
.
25.
Dentz
,
M.
, and
Carrera
,
J.
,
2007
, “
Mixing and Spreading in Stratified Flow
,”
Phys. Fluids
,
19
(
1
), p.
017107
.
26.
Wang
,
L.
,
Cardenas
,
M. B.
,
Deng
,
W.
, and
Bennett
,
P. C.
,
2012
, “
Theory for Dynamic Longitudinal Dispersion in Fractures and Rivers With Poiseuille Flow
,”
Geophys. Res. Lett.
,
39
(
5
), p.
L05401
.
27.
Meng
,
X.
, and
Yang
,
D.
,
2016
, “
Determination of Dynamic Dispersion Coefficient for Particles Flowing in a Parallel-Plate Fracture
,”
Colloids Surf. A
,
509
, pp.
259
278
.
28.
Allen
,
M. B.
, III
,
Behie
,
G. A.
, and
Trangenstein
,
J. A.
,
1988
,
Multiphase Flow in Porous Media: Mechanics, Mathematics, and Numerics
,
Springer-Verlag
,
New York
.
29.
Delgado
,
J. M. P. Q.
,
2006
, “
A Critical Review of Dispersion in Packed Beds
,”
Heat Mass Transfer
,
42
(
4
), pp.
279
310
.https://doi.org/10.1007/s00231-005-0019-0
30.
Delgado
,
J. M. P. Q.
,
2007
, “
Longitudinal and Transverse Dispersion in Porous Media
,”
Chem. Eng., Res. Des.
,
85
(
9
), pp.
1245
1252
.
31.
Paine
,
M. A.
,
Carbonell
,
R. G.
, and
Whitaker
,
S.
,
1983
, “
Dispersion in Pulsed Systems—I: Heterogenous Reaction and Reversible Adsorption in Capillary Tubes
,”
Chem. Eng. Sci.
,
38
(
11
), pp.
1781
1793
.
32.
Carbonell
,
R. G.
,
1979
, “
Effect of Pore Distribution and Flow Segregation on Dispersion in Porous Media
,”
Chem. Eng. Sci.
,
34
(
8
), pp.
1031
1039
.
33.
Arriaza
,
J. L.
, and
Ghezzehei
,
T. A.
,
2013
, “
Explaining Longitudinal Hydrodynamic Dispersion Using Variance of Pore Size Distribution
,”
J. Porous Media
,
16
(
1
), pp.
11
19
.
34.
Gill
,
W. N.
, and
Ananthakrishnan
,
V.
,
1967
, “
Laminar Dispersion in Capillaries—Part IV: The Slug Stimulus
,”
Am. Inst. Chem. Eng. J.
,
13
(
4
), pp.
801
807
.
35.
Yu
,
J. S.
,
1976
, “
An Approximate Analysis of Laminar Dispersion in Circular Tubes
,”
ASME J. Appl. Mech.
,
43
(
4
), pp.
537
542
.
36.
Yu
,
J. S.
,
1979
, “
On Laminar Dispersion Flow Through Round Tubes
,”
ASME J. Appl. Mech.
,
46
(
4
), pp.
750
756
.
37.
Yu
,
J. S.
,
1981
, “
Dispersion in Laminar Flow Through Tubes by Simultaneous Diffusion and Convection
,”
ASME J. Appl. Mech.
,
48
(
2
), pp.
217
223
.
38.
Vrentas
,
J. S.
, and
Vrentas
,
C. M.
,
1988
, “
Dispersion in Laminar Tube Flow at Low Peclet Numbers or Short Times
,”
Am. Inst. Chem. Eng. J.
,
34
(
9
), pp.
1423
1430
.
39.
Vrentas
,
J. S.
, and
Vrentas
,
C. M.
,
2000
, “
Asymptotic Solutions for Laminar Dispersion in Circular Tubes
,”
Chem. Eng. Sci.
,
55
(
4
), pp.
849
855
.
40.
James
,
S. C.
, and
Chrysikopoulos
,
C. V.
,
2000
, “
Transport of Polydisperse Colloids in a Saturated Fracture With Spatially Variable Aperture
,”
Rev. Water Resour. Res.
,
36
(
6
), pp.
1457
1465
.
41.
James
,
S. C.
,
Bilezikjian
,
T. K.
, and
Chrysikopoulos
,
C. V.
,
2005
, “
Contaminant Transport in a Fracture With Spatially Variable Aperture in the Presence of Monodisperse and Polydisperse Colloids
,”
Stochastic Environ. Res. Risk Assess.
,
19
(
4
), pp.
266
279
.
42.
Zheng
,
Q.
,
Dickson
,
S. E.
, and
Guo
,
Y.
,
2009
, “
Differential Transport and Dispersion of Colloids Relative to Solutes in Single Fractures
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
140
151
.
43.
Wang
,
L.
, and
Cardenas
,
M. B.
,
2015
, “
An Efficient Quasi-3D Particle Tracking-Based Approach for Transport Through Fractures With Application to Dynamic Dispersion Calculation
,”
J. Contam. Hydrol.
,
179
, pp.
47
54
.
44.
Krishnamoorthy
,
K.
,
2016
,
Handbook of Statistical Distributions With Applications
,
2nd ed.
,
Chapman & Hall
,
New York
.
45.
Govindaraju
,
R. S.
, and
Das
,
B. S.
,
2007
,
Moment Analysis for Subsurface Hydrologic Applications
,
Springer
, Dordrecht,
The Netherlands
.
You do not currently have access to this content.