In recent years, colloidal gas aphron (CGA) fluids have been much attended by researchers for their possible application in infill drilling, due to their pore blockage ability. In this study, the possible synergistic effect of silica nanoparticle hydrophobicity in the presence of sodium dodecyl sulfate (SDS), as a surface active agent, on enhancement of properties of CGA fluids was experimentally investigated. Results revealed that the hydrophobicity of nanoparticles, adsorbed at the bubble interface, plays an important role in improving stability and blockage ability at low as well as high pressure/temperature conditions, low shear rate viscosity (LSRV), and return permeability ability of CGA dispersion measured in a special radial sand pack apparatus at different levels of surfactant concentration. It was observed that partially hydrophobic SiO2 nanoparticles (nanosilica coated with KH550-Silane) yield a better performance than both strongly hydrophilic and hydrophobic nanoparticles (silicon dioxide nanopowder coated with 2 wt. % Silane) which confirms what is expected from the particle detachment theory. Optimal SDS concentrations equal to 0.25 wt. % for strongly hydrophilic, and 0.33 wt. % for both strongly hydrophobic and partially hydrophobic SiO2 nanoparticles were also found, which maximize the improving effect of CGA fluids. The superiority of the aphronized fluid improved by partially hydrophobic nanoparticles of SiO2 to CGA fluid stabilized only by surfactant makes the CGA fluids attractive for some industrial and drilling applications.

References

References
1.
Sebba
,
F.
,
1987
,
Foams and Biliquid Foams-Aphrons
,
Wiley
,
Toronto, ON, Canada
.
2.
Attia
,
J. A.
,
McKinley
,
I. M.
,
Moreno-Magana
,
D.
, and
Pilon
,
L.
,
2012
, “
Convective Heat Transfer in Foams Under Laminar Flow in Pipes and Tube Bundles
,”
Int. J. Heat Mass Transfer
,
55
(25–26), pp.
7823
7831
.
3.
Dai
,
Y.
, and
Deng
,
T.
,
2003
, “
Stabilization and Characterization of Colloidal Gas Aphron Dispersions
,”
J. Colloid Interface Sci.
,
261
(
2
), pp.
360
365
.
4.
Brookey
,
T.
,
1998
, “
Micro-Bubbles: New Aphron Drill-In Fluid Technique Reduces Formation Damage in Horizontal Wells
,”
SPE Formation Damage Control Conference
, Lafayette, LA, Feb. 18–19,
SPE
Paper No. SPE-39589-MS.
5.
Growcock
,
F. B.
,
Belkin
,
A.
,
Fosdick
,
M.
,
O'Conner
,
B.
, and
Brookey
,
T.
,
2007
, “
Recent Advances in Aphron Drilling-Fluid Technology
,”
SPE Drilling & Completion
,
22
(2), pp. 74–80.
6.
Popov
,
P.
, and
Growcock
,
F. B.
,
2005
, “
U.S. DOE-Backed R&D Validates Effectiveness of Aphron Drilling Fluids in Depleted Zones
,”
Drill. Contract.
,
61
(
3
), pp.
55
58
.
7.
Matsushita
,
K.
,
Mollah
,
A.
,
Stuckey
,
D.
,
Del Cerro
,
C.
, and
Bailey
,
A.
,
1992
, “
Predispersed Solvent Extraction of Dilute Products Using Colloidal Gas Aphrons and Colloidal Liquid Aphrons: Aphron Preparation, Stability and Size
,”
Colloids Surf.
,
69
(
1
), pp.
65
72
.
8.
Subramaniam
,
M. B.
,
Blakebrough
,
N.
, and
Hashim
,
V.
,
1990
, “
Clarification of Suspensions by Colloidal Gas Aphrons
,”
J. Chem. Technol. Biotechnol.
,
48
(1), pp.
41
60
.
9.
Arabloo
,
M.
, and
Shahri
,
M. P.
,
2014
, “
Experimental Studies on Stability and Viscoplastic Modeling of Colloidal Gas Aphron (CGA) Based Drilling fluids
,”
J. Pet. Sci. Eng.
,
113
, pp.
8
22
.
10.
Ramirez
,
F.
,
Greaves
,
R.
, and
Montilva
,
J.
,
2002
, “
Experience Using Microbubbles-Aphron Drilling fluid in Mature Reservoirs of Lake Maracaibo
,”
International Symposium and Exhibition on Formation Damage Control
, Lafayette, LA, Feb. 20–21,
SPE
Paper No. SPE-73710-MS.
11.
Bjorndalen
,
N.
, and
Kuru
,
E.
,
2008
, “
Physico-Chemical Characterization of Aphron-Based Drilling Fluids
,”
J. Can. Pet. Technol.
,
47
(
11
), pp.
15
21
.
12.
Growcock
,
F. B.
,
2005
, “
Enhanced Wellbore Stabilization and Reservoir Productivity With Aphron Drilling Fluid Technology
,” MASI Technologies, LLC, Houston, TX, DOE Award No.
DEFC26-03NT42000
.https://www.osti.gov/scitech/servlets/purl/896513
13.
Ziaee
,
H.
,
Arabloo
,
M.
,
Ghazanfari
,
M. H.
, and
Rashtchian
,
D.
,
2015
, “
Herschel–Bulkley Rheological Parameters of Lightweight Colloidal Gas Aphron (CGA) Based fluids
,”
Chem. Eng. Res. Des.
,
93
, pp.
21
29
.
14.
Save
,
S. V.
, and
Pangarkar
,
V. G.
,
1994
, “
Characterisation of Colloidal Gas Aphrons
,”
Chem. Eng. Commun.
,
127
(
1
), pp.
35
54
.
15.
Xu
,
Q.
,
Nakajima
,
M.
,
Ichikawa
,
S.
,
Nakamura
,
N.
,
Roy
,
P.
,
Okadome
,
H.
, and
Shiina
,
T.
,
2009
, “
Effects of Surfactant and Electrolyte Concentrations on Bubble Formation and Stabilization
,”
J. Colloid Interface Sci.
,
332
(
1
), pp.
208
214
.
16.
Arabloo
,
M.
,
Shahri
,
M. P.
, and
Zamani
,
M.
,
2013
, “
Characterization of Colloidal Gas Aphron-Fluids Produced From a New Plant-Based Surfactant
,”
J. Dispersion Sci. Technol.
,
34
(
5
), pp.
669
678
.
17.
Longe
,
T. A.
,
1989
, “
Colloidal Gas Aphrons: Generation, Flow Characterization and Application in Soil and Ground Water Decontamination
,”
Ph.D. thesis
, Virginia Polytechnic Institute and State University, Blacksburg, VAhttps://elibrary.ru/item.asp?id=5940312.
18.
Ivan
,
C.
,
Growcock
,
F.
, and
Friedheim
,
J.
,
2002
, “
Chemical and Physical Characterization of Aphron-Based Drilling fluids
,”
SPE Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 29–Oct. 2,
SPE
Paper No. SPE-77445-MS.
19.
Abdo
,
J.
, and
Haneef
,
M.
,
2012
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
014501
.
20.
Contreras
,
O.
,
Alsaba
,
M.
,
Hareland
,
G.
,
Husein
,
M.
, and
Nygaard
,
R.
,
2016
, “
Effect on Fracture Pressure by Adding Iron-Based and Calcium-Based Nanoparticles to a Nonaqueous Drilling Fluid for Permeable Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032906
.
21.
Mohebbifar
,
M.
,
Ghazanfari
,
M. H.
, and
Vossoughi
,
M.
,
2015
, “
Experimental Investigation of Nano-Biomaterial Applications for Heavy Oil Recovery in Shaly Porous Models: A Pore-Level Study
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
014501
.
22.
Amanullah
,
M. D.
, and
Al-Tahini
,
A. M.
,
2008
, “
Nano-Technology—Its Significance in Smart Fluid Development for Oil and Gas Field Application
,”
SPE Saudi Arabia Section Technical Symposium
, Al-Khobar, Saudi Arabia, May 9–11,
SPE
Paper No. SPE-126102-MS.
23.
Wang
,
H. R.
,
Gong
,
Y.
,
Lu
,
W. C.
, and
Chen
,
B. L.
,
2008
, “
Influence of Nano-SiO2 on Dilational Viscoelasticity of Liquid/Air Interface of Cetyltrimethyl Ammonium Bromide
,”
Appl. Surf. Sci.
,
254
(11), pp.
3380
3384
.
24.
Sun
,
Q.
,
Li
,
Z.
,
Wang
,
J.
,
Li
,
S.
,
Li
,
B.
,
Jiang
,
B.
,
Wang
,
H. R.
,
,
Q.
,
Zhang
,
C.
, and
Liu
,
W.
,
2015
, “
Aqueous Foam Stabilized by Partially Hydrophobic Nanoparticles in the Presence of Surfactant
,”
Colloids Surf., A
,
471
, pp.
54
64
.
25.
Singh
,
R.
, and
Mohanty
,
K. K.
,
2015
, “
Synergy Between Nanoparticles and Surfactants in Stabilizing Foams for Oil Recovery
,”
Energy Fuels
,
29
(
2
), pp.
467
479
.
26.
Amiri
,
M. C.
, and
Sadeghialiabadi
,
H.
,
2014
, “
Evaluating the Stability of Colloidal Gas Aphrons in the Presence of Montmorillonite Nanoparticles
,”
Colloids Surf., A
,
457
, pp.
212
219
.
27.
Lv
,
Q.
,
Li
,
Z.
,
Li
,
B.
,
Li
,
S.
, and
Sun
,
Q.
,
2015
, “
Study of Nanoparticle—Surfactant-Stabilized Foam as a Fracturing Fluid
,”
Ind. Eng. Chem. Res.
,
54
(
38
), pp.
9468
9477
.
28.
Binks
,
B. P.
,
Kirkland
,
M.
, and
Rodrigues
,
J. A.
,
2008
, “
Origin of Stabilisation of Aqueous Foams in Nanoparticle-Surfactant Mixtures
,”
Soft Matter
,
4
(
12
), pp.
2373
2382
.
29.
Binks
,
B. P.
,
2002
, “
Particles as Surfactants—Similarities and Differences
,”
Curr. Opin. Colloid Interface Sci.
,
7
(
1
), pp.
21
41
.
30.
Binks
,
B. P.
, and
Horozov
,
T. S.
,
2005
, “
Aqueous Foams Stabilized Solely by Silica Nanoparticles
,”
Angew. Chem.
,
117
(
24
), pp.
3788
3791
.
31.
Zhang
,
S.
,
Sun
,
D.
,
Dong
,
X.
,
Li
,
C.
, and
Xu
,
J.
,
2008
, “
Aqueous Foams Stabilized With Particles and Nonionic Surfactants
,”
Colloids Surf., A
,
324
(
1–3
), pp.
1
8
.
32.
Garrett
,
P. R.
,
1979
, “
The Effect of Polytetrafluoroethylene Particles on the Foamability of Aqueous Surfactant Solutions
,”
J. Colloid Interface Sci.
,
69
(
1
), pp.
107
121
.
33.
Worthen
,
A.
,
Bagaria
,
H.
,
Chen
,
Y.
,
Bryant
,
S.
,
Huh
,
C.
, and
Johnston
,
K.
,
2012
, “
Nanoparticle Stabilized Carbon Dioxide in Water Foams for Enhanced Oil Recovery
,”
SPE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 14–18,
SPE
Paper No. SPE-154285-MS.
34.
Yan
,
Y.
,
Qu
,
C.
,
Zhang
,
N.
,
Yang
,
Z.
, and
Liu
,
L.
,
2005
, “
A Study on the Kinetics of Liquid Drainage From Colloidal Gas Aphrons (CGAs)
,”
Colloids Surf., A
,
259
(
1–3
), pp.
167
172
.
35.
Spinelli
,
L.
,
Bezerra
,
A.
,
Aquino
,
A.
,
Lucas
,
E.
,
Monteiro
,
V.
,
Lomba
,
R.
, and
Michel
,
R.
,
2006
, “
Composition, Size Distribution and Characteristics of Aphron Dispersions
,”
Macromol. Symp.
,
245–246
(
1
), pp.
243
249
.
36.
Maestro
,
A.
,
Rio
,
E.
,
Drenckhan
,
W.
,
Langevin
,
D.
, and
Salonen
,
A.
,
2014
, “
Foams Stabilised by Mixtures of Nanoparticles and Oppositely Charged Surfactants: Relationship Between Bubble Shrinkage and Foam Coarsening
,”
Soft Matter
,
10
(
36
), pp.
6975
6983
.
37.
Williams
,
D. F.
, and
Berg
,
J. C.
,
1992
, “
The Aggregation of Colloidal Particles at the Air–Water Interface
,”
J. Colloid Interface Sci.
,
152
(
1
), pp.
218
229
.
38.
Hunter
,
T. N.
,
Wanless
,
E. J.
,
Jameson
,
G. J.
, and
Pugh
,
R. J.
,
2009
, “
Non-Ionic Surfactant Interactions With Hydrophobic Nanoparticles: Impact on Foam Stability
,”
Colloids Surf., A
,
347
(
1–3
), pp.
81
89
.
39.
GhasemiKafrudi
,
E.
, and
Hashemabadi
,
S. H.
,
2016
, “
Numerical Study on Effects of Drilling Mud Rheological Properties on the Transport of Drilling Cuttings
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012902
.
40.
Nasiri
,
M.
,
Ashrafizadeh
,
S. N.
, and
Ghalambor
,
A.
,
2009
, “
Synthesis of a Novel Ester-Based Drilling Fluid Applicable to High Temperature Conditions
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
013103
.
You do not currently have access to this content.