Sorption hysteresis characterization of CH4 and CO2 on lignite, bituminous coal, and anthracite were studied to improve the understanding of the interaction between gas molecules and different ranks of coal and further improve the precision of the adsorption methods in characterizing pore structure at low pressure. Pore structure of three ranks of coal was investigated with scanning electron microscopy (SEM) and nitrogen (N2) adsorption. Then, CH4 and CO2 sorption isotherms were measured using the gravimetric method under 288, 308, and 328 K. The N2 sorption isotherms show that a wide distribution of pore size existed in three coal samples, and with the process of coalification, the specific surface area (SSA) decreased and then increased, while the pore size of coal monotonically decreased. This is confirmed by SEM observation. The measured sorption isotherms were then decomposed into simultaneously running adsorption and absorption branches based on the assumption that the former is totally reversible and the latter completely irreversible. The reconstructed adsorption branches can be well described by both Langmuir model and Dubinin–Radushkevich (D–R) equation. The absorption, which represents the sorption hysteresis portion, increased with pressure, but decreased with temperature. The absorbed amount of gas increased with pressure, but the absorption of CO2 increased concavely with gas pressure while CH4 followed an upward exponential function. Also, the absorption varied with coal rank, following a U-shaped function. This study can provide new insights to CH4 and CO2 sorption hysteresis on coal and other organic geomaterials.

References

References
1.
Gunter
,
W. D.
,
Gentzis
,
T.
,
Rottenfuser
,
B. A.
, and
Richardson
,
R. J. H.
,
1997
, “
Deep Coal Bed Methane in Alberta, Canada: A Fossil Resource With the Potential of Zero Greenhouse Gas Emissions
,”
Energy Convers. Manage.
,
38
, pp.
217
222
.
2.
Stopa
,
J.
, and
Nawrat
,
S.
,
2012
, “
Computer Modeling of Coal Bed Methane Recovery in Coal Mines
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032804
.
3.
Prabu
,
V.
, and
Mallick
,
N.
,
2015
, “
Coalbed Methane With CO2 Sequestration: An Emerging Clean Coal Technology in India
,”
Renewable Sustainable Energy Rev.
,
50
, pp.
229
244
.
4.
Zhu
,
J. F.
,
Liu
,
J. Z.
,
Yang
,
Y. M.
,
Cheng
,
J.
,
Zhou
,
J. H.
, and
Cen
,
K. F.
,
2016
, “
Fractal Characteristics of Pore Structures in 13 Coal Specimens: Relationship Among Fractal Dimension, Pore Structure Parameter, and Slurry Ability of Coal
,”
Fuel Process Technol.
,
149
, pp.
256
267
.
5.
Zou
,
M. J.
,
Wei
,
C. T.
,
Huang
,
Z. Q.
,
Zhang
,
M.
, and
Lv
,
X. C.
,
2015
, “
Experimental Study on Identification Diffusion Pores, Permeation Pores and Cleats of Coal Samples
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021201
.
6.
Gürdal
,
G.
, and
Yalçın
,
M. N.
,
2000
, “
Gas Adsorption Capacity of Carboniferous Coals in the Zonguldak Basin (NW Turkey) and Its Controlling Factors
,”
Fuel
,
79
(
15
), pp.
1913
1924
.
7.
Harris
,
L. A.
, and
Yust
,
C. S.
,
1976
, “
Transmission Electron Microscope Observations of Porosity in Coal
,”
Fuel
,
55
(
3
), pp.
233
236
.
8.
Perera
,
M. S. A.
,
Ranjith
,
P. G.
,
Choi
,
S. K.
,
Airey
,
D.
, and
Weniger
,
P.
,
2012
, “
Estimation of Gas Adsorption Capacity in Coal: A Review and An Analytical Study
,”
Int. J. Coal Prep. Util.
,
32
(
1
), pp.
25
55
.
9.
Ozdemir
,
E.
, and
Schroeder
,
K.
,
2009
, “
Effect of Moisture on Adsorption Isotherms and Adsorption Capacities of CO2 on Coals
,”
Energy Fuels
,
23
(
5
), pp.
2821
2831
.
10.
Gensterblum
,
Y.
,
Merkel
,
A.
,
Busch
,
A.
, and
Krooss
,
B. M.
,
2013
, “
High-Pressure CH4 and CO2 Sorption Isotherms as a Function of Coal Maturity and the Influence of Moisture
,”
Int. J. Coal Geol.
,
118
, pp.
45
57
.
11.
Wang
,
Z.
,
Tang
,
X.
,
Yue
,
G.
,
Kang
,
B.
,
Xie
,
C.
, and
Li
,
X.
,
2015
, “
Physical Simulation of Temperature Influence on Methane Sorption and Kinetics in Coal: Benefits of Temperature Under 273.15 K
,”
Fuel
,
158
, pp.
207
216
.
12.
Weniger
,
P.
,
Kalkreuth
,
W.
,
Busch
,
A.
, and
Krooss
,
B. M.
,
2010
, “
High-Pressure Methane and Carbon Dioxide Sorption on Coal and Shale Samples From the Paraná Basin, Brazil
,”
Int. J. Coal Geol.
,
84
(3–4), pp.
190
205
.
13.
Nie
,
B.
,
Liu
,
X.
,
Yuan
,
S.
,
Ge
,
B.
,
Jia
,
W.
,
Wang
,
C.
, and
Chen
,
X.
,
2016
, “
Sorption Characteristics of Methane Among Various Rank Coals: Impact of Moisture
,”
Adsorption
,
22
(
3
), pp.
315
325
.
14.
Bae
,
J. S.
,
Bhatia
,
S. K.
,
Rudolph
,
V.
, and
Massarotto
,
P.
,
2009
, “
Pore Accessibility of Methane and Carbon Dioxide in Coals
,”
Energy Fuels
,
23
(
6
), pp.
3319
3327
.
15.
Melnichenko
,
Y. B.
,
He
,
L.
,
Sakurovs
,
R.
,
Kholodenko
,
A. L.
,
Blach
,
T.
,
Mastalerz
,
M.
,
Radliński
,
A. P.
,
Cheng
,
G.
, and
Mildner
,
D. F. R.
,
2012
, “
Accessibility of Pores in Coal to Methane and Carbon Dioxide
,”
Fuel
,
91
(
1
), pp.
200
208
.
16.
Mosher
,
K.
,
He
,
J.
,
Liu
,
Y.
,
Rupp
,
E.
, and
Wilcox
,
J.
,
2013
, “
Molecular Simulation of Methane Adsorption in Micro- and Mesoporous Carbons With Applications to Coal and Gas Shale Systems
,”
Int. J. Coal Geol.
,
109–110
, pp.
36
44
.
17.
Du
,
X. D.
,
Gu
,
M.
,
Duan
,
S.
, and
Xian
,
X. F.
,
2016
, “
Investigation of CO2–CH4 Displacement and Transport in Shale for Enhanced Shale Gas Recovery and CO2 Sequestration
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012909
.
18.
Fu
,
H.
,
Tang
,
D.
,
Xu
,
T.
,
Xu
,
H.
,
Tao
,
S.
,
Li
,
S.
,
Yin
,
Z.
,
Chen
,
B.
,
Zhang
,
C.
, and
Wang
,
L.
,
2017
, “
Characteristics of Pore Structure and Fractal Dimension of Low-Rank Coal: A Case Study of Lower Jurassic Xishanyao Coal in the Southern Junggar Basin, NW China
,”
Fuel
,
193
, pp.
254
264
.
19.
Wang
,
K.
,
Wang
,
G.
,
Ren
,
T.
, and
Cheng
,
Y.
,
2014
, “
Methane and CO2 Sorption Hysteresis on Coal: A Critical Review
,”
Int. J. Coal Geol.
,
132
, pp.
60
80
.
20.
Battistutta
,
E.
,
Hemert
,
P. V.
,
Lutynski
,
M.
,
Bruining
,
H.
, and
Wolf
,
K. H.
,
2010
, “
Swelling and Sorption Experiments on Methane, Nitrogen and Carbon Dioxide on Dry Selar Cornish Coal
,”
Int. J. Coal Geol.
,
84
(
1
), pp.
39
48
.
21.
Harpalani
,
S.
,
Prusty
,
B. K.
, and
Dutta
,
P.
,
2006
, “
Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration
,”
Energy Fuels
,
20
(
4
), pp.
1591
1599
.
22.
Romanov
,
V.
, and
Soong
,
Y.
,
2008
, “
Long-Term CO2 Sorption on Upper Freeport Coal Powder and Lumps
,”
Energy Fuels
,
22
(
2
), pp.
1167
1169
.
23.
Monson
,
P. A.
,
2012
, “
Understanding Adsorption/Desorption Hysteresis for Fluids in Mesoporous Materials Using Simple Molecular Models and Classical Density Functional Theory
,”
Microporous Mesoporous Mater.
,
160
, pp.
47
66
.
24.
Neimark
,
A. V.
,
Ravikovitch
,
P. I.
, and
Vishnyakov
,
A.
,
2000
, “
Adsorption Hysteresis in Nanopores
,”
Phys. Rev. E.
,
62
(2), pp.
1493
1496
.
25.
Busch
,
A.
,
Gensterblum
,
Y.
, and
Krooss
,
B. M.
,
2003
, “
Methane and CO2 Sorption and Desorption Measurements on Dry Argonne Premium Coals: Pure Components and Mixtures
,”
Int. J. Coal Geol.
,
55
(2–4), pp.
205
224
.
26.
McBain
,
J. W.
,
1935
, “
An Explanation of Hysteresis in the Hydration and Dehydration of Gels
,”
J. Am. Chem. Soc.
,
57
(
4
), pp.
699
700
.
27.
Seaton
,
N. A.
,
1991
, “
Determination of the Connectivity of Porous Solids From Nitrogen Sorption Measurements
,”
Chem. Eng. Sci.
,
46
(
8
), pp.
1895
1909
.
28.
Libby
,
B.
, and
Monson
,
P. A.
,
2004
, “
Adsorption/Desorption Hysteresis in Inkbottle Pores: A Density Functional Theory and Monte Carlo Simulation Study
,”
Langmuir
,
20
(
10
), pp.
4289
4294
.
29.
Thommes
,
M.
,
Smarsly
,
B.
,
Groenewolt
,
M.
,
Ravikovitch
,
P. I.
, and
Neimark
,
A. V.
,
2006
, “
Adsorption Hysteresis of Nitrogen and Argon in Pore Networks and Characterization of Novel Micro- and Mesoporous Silicas
,”
Langmuir
,
22
(
2
), pp.
756
764
.
30.
Clarkson
,
C. R.
, and
Bustin
,
R. M.
,
2000
, “
Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition Upon Carbon Dioxide Selectivity Over Methane
,”
Int. J. Coal Geol.
,
42
(
4
), pp.
241
271
.
31.
Jessen
,
K.
,
Guo
,
Q. T.
, and
Kovscek
,
A. R.
,
2008
, “
Laboratory and Simulation Investigation of Enhanced Coalbed Methane Recovery by Gas Injection
,”
Transp. Porous Media.
,
73
(
2
), pp.
141
159
.
32.
Ozdemir
,
E.
,
Morsi
,
B. I.
, and
Schroeder
,
K.
,
2004
, “
CO2 Adsorption Capacity of Argonne Premium Coals
,”
Fuel
,
83
(7–8), pp.
1085
1094
.
33.
Medek
,
J.
,
Weishauptova
,
Z.
, and
Kovar
,
L.
,
2006
, “
Combined Isotherm of Adsorption and Absorption on Coal and Differentiation of Both Process
,”
Microporous Mesoporous Mater.
,
89
(1–3), pp.
276
283
.
34.
Huang
,
W.
,
Peng
,
Pa.
,
Yu
,
Z.
, and
Fu
,
J.
,
2003
, “
Effects of Organic Matter Heterogeneity on Sorption and Desorption of Organic Contaminants by Soils and Sediments
,”
Appl. Geochem.
,
18
(
7
), pp.
955
972
.
35.
Wang
,
F.
, and
Cheng
,
Y. P.
,
2014
, “
Influence of Coalification on the Pore Characteristics of Middle-High Rank Coal
,”
Energy Fuels
,
28
(
9
), pp.
5729
5736
.
36.
Li
,
D.
,
Liu
,
Q.
,
Weniger
,
P.
,
Gensterblum
,
Y.
,
Busch
,
A.
, and
Krooss
,
B. M.
,
2010
, “
High-Pressure Sorption Isotherms and Sorption Kinetics of CH4 and CO2 on Coals
,”
Fuel
,
89
(
3
), pp.
569
580
.
37.
Lee
,
H. H.
,
Kim
,
H. J.
,
Shi
,
Y.
,
Keffer
,
D.
, and
Lee
,
C. H.
,
2013
, “
Competitive Adsorption of CO2/CH4 Mixture on Dry and Wet Coal From Subcritical to Supercritical Conditions
,”
Chem. Eng. J.
,
230
, pp.
93
101
.
38.
Dutta
,
P.
,
Bhowmik
,
S.
, and
Das
,
S.
,
2011
, “
Methane and Carbon Dioxide Sorption on a Set of Coals From India
,”
Int. J. Coal. Geol.
,
85
(
3–4
), pp.
289
299
.https://doi.org/10.1016/j.coal.2010.12.004
39.
Pognon
,
G.
,
Brousse
,
T.
, and
Bélanger
,
D.
,
2011
, “
Effect of Molecular Grafting on the Pore Size Distribution and the Double Layer Capacitance of Activated Carbon for Electrochemical Double Layer Capacitors
,”
Carbon
,
49
(
4
), pp.
1340
1348
.
40.
Goodman
,
A. L.
,
Busch
,
A.
,
Duffy
,
G. J.
,
Gasem
,
K. A. M.
,
Gensterblum
,
Y.
,
Krooss
,
B. M.
,
Levy
,
J.
,
Ozdemir
,
E.
,
Pan
,
Z.
,
Robinson
,
R. L.
,
Schroeder
,
K.
,
Sudibandriyo
,
M.
, and
White
,
C. M.
,
2004
, “
An Inter-Laboratory Comparison of CO2 Isotherms Measured on Argonne Premium Coal Samples
,”
Energy Fuels
,
18
(
4
), pp.
1175
1182
.
41.
Sing
,
K. S. W.
,
Everett
,
D. H.
,
Haul
,
R. A. W.
,
Mouscou
,
L.
,
Pierotti
,
R. A.
,
Rouquerol
,
J.
, and
Siemieniewska
,
T.
,
1985
, “
Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity
,”
Pure Appl. Chem.
,
57
(
4
), pp.
603
619
.https://doi.org/10.1351/pac198557040603
42.
Raymundo-Piñero
,
E.
,
Kierzek
,
K.
,
Machnikowski
,
J.
, and
Béguin
,
F.
,
2006
, “
Relationship Between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes
,”
Carbon
,
44
(
12
), pp.
2498
2507
.
43.
Shagafi
,
A.
,
2010
, “
Potential for ECBM and CO2 Storage in Mixed Gas Australian Coals
,”
Int. J. Coal Geol.
,
82
(3–4), pp.
240
251
.
44.
Merkel
,
A.
,
Gensterblum
,
Y.
,
Krooss
,
B. M.
, and
Amann
,
A.
,
2015
, “
Competitive Sorption of CH4, CO2 and H2O on Natural Coals of Different Rank
,”
Int. J. Coal Geol.
,
150–151
, pp.
181
192
.
45.
Yang
,
R. T.
,
1987
,
Gas Separation by Adsorption
,
Butterworth-Heinemann
,
Boston, MA
.
You do not currently have access to this content.