Controlling the charging power system in an electrical vehicle, presents a serious challenge for the engineer in order to find the best solution that guarantee the system effectiveness and performance. Related to this objective, this paper is presented to offer an intelligent power management algorithm, which guarantees the best process of power extraction and injection, respectively, from an electrical generator (EG) linked to an internal combustion engine (ICE) to a system of batteries via a direct current to alternative current power converter. This intelligent process was based on the fuzzy technology and the system tuning is made after a various test. Obtaining the necessary power in the exact moment and in the specific condition, that presents the goal of the presented algorithm. For obtaining the best instruction from the present intelligent process, the state of charge (SOC) of the battery, the measured output voltage from the battery and the acceleration decision of the user, are used as a real's input parameters for having a real statue of the electrical vehicle. This new process will be an asset to the highway electrical vehicle for optimizing the power consumption. To evaluate the algorithm performance matlab/simulink is used and a simulation results are presented and discussed.

References

References
1.
Addasi
,
E. S.
,
2011
, “
Modelling and Simulation of AC Electric Drive Control System With Variable Moment of Inertia
,”
Int. J. Model. Identif. Control
,
14
(
3
), pp.
170
177
.
2.
Tse
,
C. G.
,
Maples
,
B. A.
, and
Kreith
,
F.
,
2015
, “
The Use of Plug-In Hybrid Electric Vehicles for Peak Shaving
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011201
.
3.
Armand
,
M.
, and
Tarascon
,
J.-M.
,
2008
, “
Building Better Batteries
,”
Nature
,
451
(
7179
), pp.
652
657
.
4.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Experimental and Theoretical Efficiency Investigation of Hybrid Electric Vehicle Battery Thermal Management Systems
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011202
.
5.
Dost
,
P.
,
Przybyl
,
B.
, and
Sourkounis
,
C.
,
2013
, “
Operation Management of a High Power Vehicle-to-Grid Charging Station
,”
15th European Conference on Power Electronics and Applications
(
EPE
), Lille, France, Sept. 2–6, pp. 1–10.
6.
Greenwood
,
A.
, and
Selzer
,
A.
,
1973
, “
Electrical Transients in Power Systems
,”
IEEE Trans. Syst. Man Cybern.
,
SMC-3
(
3
), pp.
301
302
.
7.
Facci
,
A. L.
,
Andreassi
,
L.
,
Martini
,
F.
, and
Ubertini
,
S.
,
2014
, “
Comparing Energy and Cost Optimization in Distributed Energy Systems Management
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032001
.
8.
Luo
,
X.
,
Wang
,
J.
,
Dooner
,
M.
, and
Clarke
,
J.
,
2015
, “
Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation
,”
Appl. Energy
,
137
, pp.
511
536
.
9.
Flah
,
A.
, and
Chokri Mahmoudi
,
S. L.
,
2014
, “
An Overview of Electric Vehicle Concept and Power Management Strategies
,”
International Conference on Electrical Sciences and Technologies in Maghreb
(
CISTEM
), Tunis, Tunisia, Nov. 3–6, pp.
1
8
.
10.
Njajra
,
Z.
,
Flah
,
A.
, and
Sbita
,
L.
,
2016
, “
Dynamic Modelling of a Series Hybrid Electrical Vehicle
,”
Proceeding of Engineering and Technology (PET)
, pp.
463
468
.
11.
López
,
M. A.
,
De La Torre
,
S.
,
Martín
,
S.
, and
Aguado
,
J. A.
,
2015
, “
Demand-Side Management in Smart Grid Operation Considering Electric Vehicles Load Shifting and Vehicle-to-Grid Support
,”
Int. J. Electr. Power Energy Syst.
,
64
, pp.
689
698
.
12.
Ma
,
Y.
,
Houghton
,
T.
,
Cruden
,
A.
, and
Infield
,
D.
,
2012
, “
Modeling the Benefits of Vehicle-to-Grid Technology to a Power System
,”
IEEE Trans. Power Syst.
,
27
(
2
), pp.
1012
1020
.
13.
Hannan
,
M. A.
,
Azidin
,
F. A.
, and
Mohamed
,
A.
,
2014
, “
Hybrid Electric Vehicles and Their Challenges: A Review
,”
Renewable Sustainable Energy Rev.
,
29
, pp.
135
150
.
14.
Nakir
,
I.
,
Durusu
,
A.
,
Akca
,
H.
,
Ajder
,
A.
,
Ayaz
,
R.
,
Ugur
,
E.
, and
Tanrioven
,
M.
,
2015
, “
A New MPPT Algorithm for Vehicle Integrated Solar Energy System
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
021601
.
15.
Farhat
,
M.
,
Barambones
,
O.
,
Flah
,
A.
, and
Sbita
,
L.
,
2016
, “
Variable Structure MPP Controller for Photovoltaic Pumping System
,”
Trans. Inst. Meas. Control
, pp.
1
10
.https://doi.org/10.1177/0142331216634429
16.
Villaizán
,
J. A. R.
,
Pineda
,
C. A. C.
,
Moreno
,
R. J.
, and
Ramos
,
O. L. S.
,
2014
, “
Analysis for the Design of a Unipersonal Electric Vehicle Prototype With Photovoltaic Panels
,”
Third International Congress Engineering Mechatronics and Automation
(
CIIMA
), Cartagena, Colombia, Oct. 22–24, pp.
1
5
.
17.
Sabri
,
M. F. M.
,
Danapalasingam
,
K. A.
, and
Rahmat
,
M. F.
,
2016
, “
A Review on Hybrid Electric Vehicles Architecture and Energy Management Strategies
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
1433
1442
.
18.
Radu
,
R.
,
Micheli
,
D.
,
Alessandrini
,
S.
,
Casula
,
I.
, and
Radu
,
B.
,
2015
, “
Modeling and Performance Analysis of an Integrated System: Variable Speed Operated Internal Combustion Engine Combined Heat and Power Unit–Photovoltaic Array
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032001
.
19.
Rassõlkin
,
A.
,
2013
, “
An Overview of Electrical Vehicle and Hybrid Electrical Vehicle Drives
,”
13th International Symposium-Topical Problems in the Field of Electrical and Power Engineering
, Pärnu, Estonia, Jan. 14–19, pp.
76
80
.https://www.scribd.com/document/335478670/An-Overview-of-Electrical-Vehicle-and-Hybrid-Electrical-Vehicle-Drives
20.
Malikopoulos
,
A. A.
,
2014
, “
Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles: A Survey
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
5
), pp.
1869
1885
.
21.
Zhang
,
C.
,
Vahidi
,
A.
,
Pisu
,
P.
,
Li
,
X.
, and
Tennant
,
K.
,
2010
, “
Role of Terrain Preview in Energy Management of Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
59
(
3
), pp.
1139
1147
.
22.
Denton
,
T.
,
2004
,
Automobile Electrical and Electronic Systems
,
3rd ed.
,
Elsevier Butterworth-Heinemann
,
Oxford, UK
.
23.
Di Domenico
,
D.
,
Stefanopoulou
,
A.
, and
Fiengo
,
G.
,
2010
, “
Lithium-Ion Battery State of Charge and Critical Surface Charge Estimation Using an Electrochemical Model-Based Extended Kalman Filter
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
6
), p.
061302
.
24.
Becker-Steinberger
,
K.
,
Funken
,
S.
,
Landstorfer
,
M.
, and
Urban
,
K.
,
2010
, “
A Mathematical Model for All Solid-State Lithium-Ion Batteries
,”
ECS Trans.
,
25
(
36
), pp.
285
296
.
25.
Chen
,
X.
,
Shen
,
W.
,
Vo
,
T. T.
,
Cao
,
Z.
, and
Kapoor
,
A.
,
2012
, “
An Overview of Lithium-Ion Batteries for Electric Vehicles
,”
Tenth International Power & Energy Conference
(
IPEC
), Ho Chi Minh City, Vietnam, Dec. 12–14, pp.
230
235
.
26.
Ota
,
Y.
,
Taniguchi
,
H.
,
Nakajima
,
T.
,
Liyanage
,
K. M.
,
Baba
,
J.
, and
Yokoyama
,
A.
,
2012
, “
Autonomous Distributed V2G (Vehicle-to-Grid) Satisfying Scheduled Charging
,”
IEEE Trans. Smart Grid
,
3
(
1
), pp.
559
564
.
27.
Ye
,
B.
,
Jiang
,
J.
,
Miao
,
L.
,
Yang
,
P.
,
Li
,
J.
, and
Shen
,
B.
,
2015
, “
Feasibility Study of a Solar-Powered Electric Vehicle Charging Station Model
,”
Energies
,
8
(
11
), pp.
13265
13283,
.
28.
Monteiro
,
V.
,
Pinto
,
J. G.
, and
Afonso
,
J. L.
,
2016
, “
Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes
,”
IEEE Trans. Veh. Technol.
,
65
(
3
), pp.
1007
1020
.
29.
Ibrahim
,
M.
,
Pichon
,
L.
,
Bernard
,
L.
,
Razek
,
A.
,
Houivet
,
J.
, and
Cayol
,
O.
,
2015
, “
Advanced Modeling of a 2-kW Series-Series Resonating Inductive Charger for Real Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
64
(
2
), pp.
421
430
.
30.
Rajashekara
,
K.
,
Emadi
,
A.
, and
Lee
,
Y. J.
,
2008
, “
Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-in Hybrid Electric Vehicles
,”
IEEE Trans. Ind. Electron.
,
55
(
6
), pp.
2237
2245
.
31.
Aghaei
,
J.
,
Esmaeel
,
A.
,
Rabiee
,
A.
, and
Rahimi
,
E.
,
2016
, “
Contribution of Plug-in Hybrid Electric Vehicles in Power System Uncertainty Management
,”
Renewable Sustainable Energy Rev.
,
59
(
99
), pp.
450
458
.
32.
Alam
,
M.
,
Green
,
R. C.
, II
, and
Wang
,
L.
,
2010
, “
The Impact of Plug-in Hybrid Electric Vehicles on Distribution Networks: A Review and Outlook
,”
Renewable Sustainable Energy Rev.
,
15
(
1
), pp.
544
553
.https://doi.org/10.1016/j.rser.2010.08.015
33.
Bashash
,
S.
,
Moura
,
S. J.
,
Forman
,
J. C.
, and
Fathy
,
H. K.
,
2011
, “
Plug-in Hybrid Electric Vehicle Charge Pattern Optimization for Energy Cost and Battery Longevity
,”
J. Power Sources
,
196
(
1
), pp.
541
549
.
34.
Tie
,
S. F.
, and
Tan
,
C. W.
,
2013
, “
A Review of Energy Sources and Energy Management System in Electric Vehicles
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
82
102
.
35.
Torres
,
J. L.
,
Gonzalez
,
R.
,
Gimenez
,
A.
, and
Lopez
,
J.
,
2014
, “
Energy Management Strategy for Plug-in Hybrid Electric Vehicles—A Comparative Study
,”
Appl. Energy
,
113
, pp.
816
824
.
36.
Zandi
,
M.
,
Payman
,
A.
,
Martin
,
J.
,
Pierfederici
,
S.
,
Davat
,
B.
, and
Meibody-Tabar
,
F.
,
2011
, “
Energy Management of a Fuel Cell/Supercapacitor/Battery Power Source for Electric Vehicular Applications
,”
IEEE Trans. Veh. Technol.
,
60
(
2
), pp.
433
443
.
37.
Bhatti
,
A. R.
,
Salam
,
Z.
,
Aziz
,
M. J. B. A.
,
Yee
,
K. P.
, and
Ashique
,
R. H.
,
2016
, “
Electric Vehicles Charging Using Photovoltaic: Status and Technological Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
34
47
.
38.
Quinn
,
C.
,
Zimmerle
,
D.
, and
Bradley
,
T. H.
,
2012
, “
An Evaluation of State-of-Charge Limitations and Actuation Signal Energy Content on Plug-in Hybrid Electric Vehicle, Vehicle-to-Grid Reliability, and Economics
,”
IEEE Trans. Smart Grid
,
3
(
1
), pp.
483
491
.
39.
Itani
,
K.
,
De Bernardinis
,
A.
,
Zoubir
,
K.
, and
Jammal
,
A.
,
2016
, “
Regenerative Braking Modeling, Control, and Simulation of a Hybrid Energy Storage System for an Electric Vehicle in Extreme Conditions
,”
IEEE Trans. Transp. Electrif.
,
2
(
4
), pp.
465
479
.
40.
Khayyam
,
H.
,
Kouzani
,
A.
,
Nahavandi
,
S.
,
Marano
,
V.
, and
Rizzoni
,
G.
,
2010
, “
Intelligent Energy Management in Hybrid Electric Vehicles
,”
Energy Management, InTech, Rijeka, Croatia
, pp.
147
175
.
41.
Bhowmik
,
S.
,
Panua
,
R.
,
Debroy
,
D.
, and
Paul
,
A.
,
2017
, “
Artificial Neural Network Prediction of Diesel Engine Performance and Emission Fueled With Diesel–Kerosene–Ethanol Blends: A Fuzzy-Based Optimization
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042201
.
42.
Liu
,
L.
, and
Liu
,
C.
,
2012
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.
43.
Panda
,
J. K.
,
Sastry
,
G. R. K.
, and
Rai
,
R. N.
,
2017
, “
A Taguchi-Fuzzy-Based Multi-Objective Optimization of a Direct Injection Diesel Engine Fueled With Different Blends of Leucas Zeylanica Methyl Ester and 2-Ethylhexyl Nitrate Diesel Additive With Diesel
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042209
.
44.
Panday
,
A.
, and
Bansal
,
H.
,
2014
, “
A Review of Optimal Energy Management Strategies for Hybrid Electric Vehicle
,”
Int. J. Veh. Technol.
,
2014
, p.
160510
.http://dx.doi.org/10.1155/2014/160510
45.
Gaoua
,
Y.
,
Caux
,
S.
,
Lopez
,
P.
, and
Salvany
,
J. D.
,
2013
, “
Energy Management Using Fuzzy Logic, on HEV
,”
Electric Vehicle Symposium and Exhibition
(
EVS27
), Barcelona, Spain, Nov. 17–20, pp.
1
7
.
46.
Rahman
,
A.
,
Nur
,
F.
,
Hawlader
,
M. N. A.
, and
Afroz
,
R.
,
2015
, “
Fuzzy Controlled Evaporative Battery Thermal Management System for EV/HEV
,”
Int. J. Electr. Hybrid Veh.
,
7
(
1
), pp.
22
39
.
47.
Sisakat
,
S. T.
, and
Barakati
,
S. M.
,
2015
, “
Fuzzy Energy Management in Electrical Vehicles With Different Hybrid Energy Storage Topologies
,”
4th Iranian Joint Congress on Fuzzy and Intelligent Systems
(
CFIS
), Zahedan, Iran, Sept. 9–11, pp. 1–6.
48.
Abdelsalam
,
A. A.
, and
Cui
,
S.
,
2012
, “
A Fuzzy Logic Global Power Management Strategy for Hybrid Electric Vehicles Based on a Permanent Magnet Electric Variable Transmission
,”
Energies
,
5
(
4
), pp.
1175
1198
.
49.
Mahmoudi
,
C.
,
Flah
,
A.
, and
Sbita
,
L.
,
2015
, “
Novel Concept of Power Management Architecture Based on Smart EV Learning DataBase
,”
International Conference on Systems, Control, Signal Processing, and Informatics
(
SCSI
), Barcelona, Spain, Apr. 7–9, pp.
191
196
.https://www.researchgate.net/publication/292981583_Novel_concept_of_Power_Management_Architecture_based_on_Smart_EV_Learning_DataBase_Pr_Lassaad_SBITA
You do not currently have access to this content.