This paper investigates the nature of entropy generation in stratified sensible thermal energy stores (SSTES) during charging using a dimensionless axisymmetric numerical model of an SSTES. Time-varying dimensionless entropy generation rates and the cumulative entropy generation in SSTES were determined from finite volume computations. The aspect ratios (AR), Peclet numbers (PeD), and Richardson numbers (Ri), for the stores considered were within the ranges 1AR4,5×103PeD100×103, and 10Ri104, respectively. Using the Bejan number (Be), the total entropy generation was shown to be almost entirely due to thermal effects in the SSTES. The Be is practically unity for most of the SSTES' charging duration. The contributions of radial thermal gradients to the thermal entropy generation were further shown to be largely negligible in comparison to the contributions of axial thermal gradients, except at low Ri. Entropy generation numbers, Ns, in the SSTES were also computed and found to increase with decreasing AR and PeD and with increasing Ri. PeD was found to have the most significant influence on Ns. Based on this axisymmetric analyses of time-varying entropy generation in SSTES, estimates have been obtained of (1) the relative significance of radial effects on entropy generation within SSTES and (2) the relative significance of viscous shear entropy generation mechanisms within SSTES.

References

References
1.
Kaizawa
,
A.
,
Kamano
,
H.
,
Kawai
,
A.
,
Jozuka
,
T.
,
Senda
,
T.
,
Maruoka
,
N.
, and
Akiyama
,
T.
,
2008
, “
Thermal and Flow Behaviors in Heat Transportation Container Using Phase Change Material
,”
Energy Convers. Manage.
,
49
(
4
), pp.
698
706
.
2.
Afrin
,
S.
,
Kumar
,
V.
,
Bharathan
,
D.
,
Glatzmaier
,
G. C.
, and
Ma
,
Z.
,
2014
, “
Computational Analysis of a Pipe Flow Distributor for a Thermocline Based Thermal Energy Storage System
,”
ASME J. Sol. Energy Eng.
,
136
(2), p.
021010
.
3.
Njoku
,
H. O.
,
Ekechukwu
,
O. V.
, and
Onyegegbu
,
S. O.
,
2014
, “
Analysis of Stratified Thermal Storage Systems: An Overview
,”
Heat Mass Transfer
,
50
(
7
), pp.
1017
1030
.
4.
Khan
,
F.
, and
Savilonis
,
B.
,
2016
, “
Plate Diffuser Performance in Spherical Tank Thermocline Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052006
.
5.
Hollands
,
K. G. T.
, and
Lightstone
,
M. F.
,
1989
, “
A Review of Low-Flow, Stratified-Tank Solar Water Heating Systems
,”
Sol. Energy
,
43
(
2
), pp.
97
105
.
6.
Zurigat
,
Y. H.
, and
Ghajar
,
A. J.
,
2002
, “
Thermal Energy Storage: Systems and Applications
,”
Heat Transfer and Stratification in Sensible Heat Storage Systems
,
Wiley
,
Chichester, UK
, Chap. 6.
7.
Han
,
Y. M.
,
Wang
,
R. Z.
, and
Dai
,
Y. J.
,
2009
, “
Thermal Stratification Within the Water Tank
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
1014
1026
.
8.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
1991
,
Solar Engineering of Thermal Processes
,
2nd ed.
,
Wiley
,
New York
.
9.
Abu-Hamdan
,
M. G.
,
Zurigat
,
Y. H.
, and
Ghajar
,
A. J.
,
1992
, “
An Experimental Study of a Stratified Thermal Storage Under Variable Inlet Temperature for Different Inlet Designs
,”
Int. J. Heat Mass Transfer
,
35
(
8
), pp.
1927
1934
.
10.
Cristofari
,
C.
,
Notton
,
G.
,
Poggi
,
P.
, and
Louche
,
A.
,
2003
, “
Influence of the Flow Rate and the Tank Stratification Degree on the Performances of a Solar Flat-Plate Collector
,”
Int. J. Therm. Sci.
,
42
(
5
), pp.
455
469
.
11.
Rosen
,
M. A.
,
Tang
,
R.
, and
Dincer
,
I.
,
2004
, “
Effect of Stratification on Energy and Exergy Capacities in Thermal Storage Systems
,”
Int. J. Energy Res.
,
28
(
2
), pp.
177
193
.
12.
Haller
,
M. Y.
,
Cruickshank
,
C. A.
,
Streicher
,
W.
,
Harrison
,
S. J.
,
Andersen
,
E.
, and
Furbo
,
S.
,
2009
, “
Methods to Determine Stratification Efficiency of Thermal Energy Storage Processes—Review and Theoretical Comparison
,”
Sol. Energy
,
83
(
10
), pp.
1847
1860
.
13.
Castell
,
A.
,
Medrano
,
M.
,
Solé
,
C.
, and
Cabeza
,
L. F.
,
2010
, “
Dimensionless Numbers Used to Characterize Stratification in Water Tanks for Discharging at Low Flow Rates
,”
Renewable Energy
,
35
(
10
), pp.
2192
2199
.
14.
Rosen
,
M. A.
,
2001
, “
The Exergy of Stratified Thermal Energy Storages
,”
Sol. Energy
,
71
(
3
), pp.
173
185
.
15.
Rosen
,
M. A.
, and
Dincer
,
I.
,
2003
, “
Exergy Methods for Assessing and Comparing Thermal Storage Systems
,”
Int. J. Energy Res.
,
27
(
4
), pp.
415
430
.
16.
Njoku
,
H. O.
,
Ekechukwu
,
O. V.
, and
Onyegegbu
,
S. O.
,
2016
, “
Comparison of Energy, Exergy and Entropy Generation-Based Criteria for Evaluating Stratified Thermal Store Performances
,”
Energy Build.
,
124
, pp.
141
152
.
17.
Consul
,
R.
,
Rodryguez
,
I.
,
Perez-Segarra
,
C. D.
, and
Soria
,
M.
,
2004
, “
Virtual Prototyping of Storage Tanks by Means of Three-Dimensional CFD and Heat Transfer Numerical Simulations
,”
Sol. Energy
,
77
(
2
), pp.
179
191
.
18.
Bjurström
,
H.
, and
Carlsson
,
B.
,
1985
, “
An Exergy Analysis of Sensible and Latent Heat Storage
,”
Heat Recovery Syst. CHP
,
5
(
3
), pp.
233
250
.
19.
Solé
,
C.
,
Medrano
,
M.
,
Castell
,
A.
,
Nogués
,
M.
,
Mehling
,
H.
, and
Cabeza
,
L. F.
,
2008
, “
Energetic and Exergetic Analysis of a Domestic Water Tank With Phase Change Material
,”
Int. J. Energy Res.
,
32
(
3
), pp.
204
214
.
20.
Jack
,
M. W.
, and
Wrobel
,
J.
,
2009
, “
Thermodynamic Optimization of a Stratified Thermal Storage Device
,”
Appl. Therm. Eng.
,
29
, pp.
2344
2349
.
21.
Martinez-Patino
,
J.
,
Serra
,
L.
,
Verda
,
V.
,
Picon-Nunez
,
M.
, and
Rubio-Maya
,
C.
,
2016
, “
Thermodynamic Analysis of Simultaneous Heat and Mass Transfer Systems
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062006
.
22.
Mira-Hernandez
,
C.
,
Flueckiger
,
S. M.
, and
Garimella
,
S. V.
,
2015
, “
Comparative Analysis of Single- and Dual-Media Thermocline Tanks for Thermal Energy Storage in Concentrating Solar Power Plants
,”
ASME J. Sol. Energy Eng.
,
137
(
3
), p.
031012
.
23.
AlZahrani
,
A. A.
, and
Dincer
,
I.
,
2016
, “
Performance Assessment of an Aquifer Thermal Energy Storage System for Heating and Cooling Applications
,”
ASME J. Energy Resour. Technol.
,
138
(1), p.
011901
.
24.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, FL
.
25.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2011
,
Thermal Energy Storage: Systems and Applications
,
2nd ed.
,
Wiley
,
Chichester, UK
.
26.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
27.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
28.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-Size Devices and Finite-Time Processes
,”
J. Appl. Phys.
,
79
(
3
), pp.
1191
1218
.
29.
Bejan
,
A.
,
1996
, “
Method of Entropy Generation Minimization, or Modeling and Optimization Based on Combined Heat Transfer and Thermodynamics
,”
Rev. Gén. Therm.
,
35
, pp.
637
646
.
30.
Ting
,
T. W.
,
Hung
,
Y. M.
, and
Guo
,
N.
,
2016
, “
Viscous Dissipation Effect on Streamwise Entropy Generation of Nanofluid Flow in Microchannel Heat Sinks
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052002
.
31.
Vasu
,
B.
,
RamReddy
,
C.
,
Murthy
,
P. V. S. N.
, and
Gorla
,
R. S. R.
,
2017
, “
Entropy Generation Analysis in Nonlinear Convection Flow of Thermally Stratified Fluid in Saturated Porous Medium With Convective Boundary Condition
,”
ASME J. Heat Transfer
,
139
(
9
), p.
091701
.
32.
Homan
,
K. O.
,
2003
, “
Internal Entropy Generation Limits for Direct Sensible Thermal Storage
,”
ASME J. Energy Resour. Technol.
,
125
(
2
), pp.
85
93
.
33.
Ji
,
Y.
, and
Homan
,
K. O.
,
2007
, “
On Simplified Models for the Rate- and Time-Dependent Performance of Stratified Thermal Storage
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
214
222
.
34.
Badescu
,
V.
,
2004
, “
Optimal Operation of Thermal Energy Storage Units Based on Stratified and Fully Mixed Water Tanks
,”
Appl. Therm. Eng.
,
24
, pp.
2101
2116
.
35.
Zurigat
,
Y. H.
,
Liche
,
P. R.
, and
Ghajar
,
A. J.
,
1991
, “
Influence of Inlet Geometry on Mixing in Thermocline Thermal Energy Storage
,”
Int. J. Heat Mass Transfer
,
34
(
1
), pp.
115
125
.
36.
Van Berkel
,
J.
,
1996
, “
Mixing in Thermally Stratified Energy Stores
,”
Sol. Energy
,
58
(
4–6
), pp.
203
211
.
37.
Van Berkel
,
J.
,
Rindt
,
C. C. M.
, and
Van Steenhoven
,
A. A.
,
1999
, “
Modelling of Two-Layer Stratified Stores
,”
Sol. Energy
,
67
(
1–3
), pp.
65
78
.
38.
Shah
,
L. J.
, and
Furbo
,
S.
,
2003
, “
Entrance Effects in Solar Storage Tanks
,”
Sol. Energy
,
75
(
4
), pp.
337
348
.
39.
Shah
,
L. J.
,
Andersen
,
E.
, and
Furbo
,
S.
,
2005
, “
Theoretical and Experimental Investigations of Inlet Stratifiers for Solar Storage Tanks
,”
Appl. Therm. Eng.
,
25
, pp.
2086
2099
.
40.
Hahne
,
E.
, and
Chen
,
Y.
,
1998
, “
Numerical Study of Flow and Heat Transfer Characteristics in Hot Water Stores
,”
Sol. Energy
,
64
(
1–3
), pp.
9
18
.
41.
Farmahini-Farahani
,
M.
,
2012
, “
Investigation of Four Geometrical Parameters on Thermal Stratification of Cold Water Tanks by Exergy Analysis
,”
Int. J. Exergy
,
10
(
3
), pp.
332
345
.
42.
Njoku
,
H. O.
,
Ekechukwu
,
O. V.
, and
Onyegegbu
,
S. O.
,
2016
, “
Normalized Charging Exergy Performance of Stratified Sensible Thermal Stores
,”
Sol. Energy
,
136
, pp.
487
498
.
43.
OpenCFD
,
2013
, “
OpenFOAM—The Open Source CFD Toolbox (User Guide)
,” OpenFOAM Foundation, London, accessed Aug. 14, 2017, http://www.openfoam.com/documentation/user-guide/
44.
Yoo
,
H.
, and
Pak
,
E.
,
1993
, “
Theoretical Model of the Charging Process for Stratified Thermal Storage Tanks
,”
Sol. Energy
,
51
(
6
), pp.
513
519
.
45.
Cole
,
R. L.
, and
Bellinger
,
F. O.
,
1982
, “
Thermally Stratified Tanks
,”
ASHRAE Trans.
,
88
, pp.
1005
1017
.
46.
Chen
,
S.
, and
Krafczyk
,
M.
,
2009
, “
Entropy Generation in Turbulent Natural Convection Due to Internal Heat Generation
,”
Int. J. Therm. Sci.
,
48
(
10
), pp.
1978
1987
.
47.
Shanbghazani
,
M.
,
Heidarpoor
,
V.
,
Rosen
,
M. A.
, and
Iraj
,
M.
,
2010
, “
Numerical Investigation of Local Entropy Generation for Laminar Flow in Rotating-Disk Systems
,”
ASME J. Heat Transfer
,
132
(
9
), p.
091701
.
48.
Li
,
J.
, and
Kleinstreuer
,
C.
,
2010
, “
Entropy Generation Analysis for Nanofluid Flow in Microchannels
,”
ASME J. Heat Transfer
,
132
(
12
), p.
122401
.
49.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2012
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122501
.
50.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2014
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Rotating Circular Cylinder
,”
ASME J. Heat Transfer
,
136
(
6
), p.
062501
.
51.
Lienhard
,
J. H.
, and
Lienhard
,
J. H.
,
2006
,
A Heat Transfer Textbook
,
3rd ed.
,
Phlogiston Press
,
Cambridge, MA
.
You do not currently have access to this content.