Ensemble Kalman filter (EnKF) uses recursive updates for data assimilation and provides dependable uncertainty quantification. However, it requires high computing cost. On the contrary, ensemble smoother (ES) assimilates all available data simultaneously. It is simple and fast, but prone to showing two key limitations: overshooting and filter divergence. Since channel fields have non-Gaussian distributions, it is challenging to characterize them with conventional ensemble based history matching methods. In many cases, a large number of models should be employed to characterize channel fields, even if it is quite inefficient. This paper presents two novel schemes for characterizing various channel reservoirs. One is a new ensemble ranking method named initial ensemble selection scheme (IESS), which selects ensemble members based on relative errors of well oil production rates (WOPR). The other is covariance localization in ES, which uses drainage area as a localization function. The proposed method integrates these two schemes. IESS sorts initial models for ES and these selected are also utilized to calculate a localization function of ES for fast and reliable channel characterization. For comparison, four different channel fields are analyzed. A standard EnKF even using 400 models shows too large uncertainties and updated permeability fields lose channel continuity. However, the proposed method, ES with covariance localization assisted by IESS, characterizes channel fields reliably by utilizing good 50 models selected. It provides suitable uncertainty ranges with correct channel trends. In addition, the simulation time of the proposed method is only about 19% of the time required for the standard EnKF.

References

1.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(
C5
), pp.
10143
10162
.
2.
Nævdal
,
G.
,
Manneseth
,
T.
, and
Vefring
,
E. H.
,
2002
, “
Near-Well Reservoir Monitoring Through Ensemble Kalman Filter
,”
SPE/DOE Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 13–17,
SPE
Paper No. SPE-75235-MS.
3.
Van Leeuwen
,
P. J.
, and
Evensen
,
G.
,
1996
, “
Data Assimilation and Inverse Methods in Terms of a Probabilistic Formulation
,”
Mon. Weather Rev.
,
124
(
12
), pp.
2898
2913
.
4.
Skjervheim
,
J.-A.
,
Evensen
,
G.
,
Hove
,
J.
, and
Vabø
,
J. G.
,
2011
, “
An Ensemble Smoother for Assisted History Matching
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Feb. 21–23,
SPE
Paper No. SPE-141929-MS.
5.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
79
87
.
6.
Oliver
,
D. S.
, and
Chen
,
Y.
,
2011
, “
Recent Progress on Reservoir History Matching: A Review
,”
Comput. Geosci.
,
15
(
1
), pp.
185
221
.
7.
Lee
,
K.
,
Jung
,
S. P.
,
Shin
,
H.
, and
Choe
,
J.
,
2014
, “
Uncertainty Quantification of Channelized Reservoir Using Ensemble Smoother With Selective Measurement Data
,”
Energy Explor. Exploit.
,
32
(
5
), pp.
805
816
.
8.
Sarma
,
P.
, and
Chen
,
W. H.
,
2009
, “
Generalization of the Ensemble Kalman Filter Using Kernels for Non-Gaussian Random Fields
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Feb. 2–4,
SPE
Paper No. SPE-119177-MS.
9.
Lorentzen
,
R. J.
,
Flornes
,
K. M.
, and
Nævdal
,
G.
,
2009
, “
History Matching Channelized Reservoir Using the Ensemble Kalman Filter
,”
International Petroleum Technology Conference
, Doha, Qatar, Dec. 7–9,
SPE
Paper No. SPE-14020-MS.
10.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2007
, “
Efficient Permeability Parameterization With the Discrete Cosine Transform
,”
SPE Reservoir Simulation Symposium
, Houston, TX, Feb. 26–28,
SPE
Paper No. SPE-106453-MS.
11.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2008
, “
History Matching With an Ensemble Kalman Filter and Discrete Cosine Parameterization
,”
Comput. Geosci.
,
12
(
2
), pp.
227
244
.
12.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Reservoir Characterization With the Discrete Cosine Transform
,”
SPE J.
,
14
(
1
), pp.
182
201
.
13.
Jung
,
H.
,
Jo
,
H.
,
Kim
,
S.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Recursive Update of Channel Information for Reliable History Matching of Channel Reservoirs Using EnKF With DCT
,”
J. Pet. Sci. Eng.
,
154
, pp.
19
37
.
14.
Kim
,
S.
,
Lee
,
C.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Characterization of Channelized gas Reservoirs Using Ensemble Kalman Filter With Application of Discrete Cosine Transformation
,”
Energy Explor. Exploit.
,
34
(
2
), pp.
319
336
.
15.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
16.
Panwar
,
W.
,
Trivedi
,
J. J.
, and
Nejadi
,
S.
,
2015
, “
Importance of Distributed Temperature Sensor Data for Steam Assisted Gravity Drainage Reservoir Characterization and History Matching Within Ensemble Kalman Filter Framework
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042902
.
17.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Estimating Channelized-Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design
,”
SPE J.
,
14
(
2
), pp.
374
388
.
18.
Van Leeuwen
,
P. J.
,
1999
, “
Comment on Data Assimilation Using an Ensemble Kalman Filter Technique
,”
Mon. Weather Rev.
,
127
(
6
), pp.
1374
1377
.
19.
Wen
,
X. H.
, and
Chen
,
W. H.
,
2007
, “
Some Practical Issues on Real-Time Reservoir Model Updating Using Ensemble Kalman Filter
,”
SPE J.
,
12
(
2
), pp.
156
166
.
20.
Kang
,
B.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Improvement of Ensemble Smoother With SVD-Assisted Sampling Scheme
,”
J. Pet. Sci. Eng.
,
141
, pp.
114
124
.
21.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Regeneration of Initial Ensembles With Facies Analysis for Efficient History Matching
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042903
.
22.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
23.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
24.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2013
, “
Characterization of Channelized Reservoir Using Ensemble Kalman Filter With Clustered Covariance
,”
Energy Explor. Exploit.
,
31
(
1
), pp.
17
29
.
25.
Lee
,
K.
,
Jeong
,
H.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2013
, “
Improvement of Ensemble Smoother With Clustered Covariance for Channelized Reservoirs
,”
Energy Explor. Exploit.
,
31
(
5
), pp.
713
726
.
26.
Lee
,
K.
,
Jung
,
S.
,
Lee
,
T.
, and
Choe
,
J.
,
2016
, “
Use of Clustered Covariance and Selective Measurement Data in Ensemble Smoother for Three-Dimensional Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022905
.
27.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2016
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(1), p.
012906
.
28.
Le
,
D. H.
,
Younis
,
R.
, and
Reynolds
,
A. C.
,
2015
, “
A History Matching Procedure for Non-Gaussian Facies Based on ES-MDA
,”
SPE Reservoir Simulation Symposium
, Houston, TX, Feb. 26–28,
SPE
Paper No. SPE-173233-MS.
29.
Yeo
,
M. J.
,
Jung
,
S. P.
, and
Choe
,
J.
,
2014
, “
Covariance Matrix Localization Using Drainage Area in an Ensemble Kalman Filter
,”
Energy Sources, Part A
,
36
(
19
), pp.
2154
2165
.
30.
Jung
,
S. P.
, and
Choe
,
J.
,
2012
, “
Reservoir Characterization Using a Streamline-Assisted Ensemble Kalman Filter With Covariance Localization
,”
Energy Explor. Exploit.
,
30
(
4
), pp.
645
660
.
You do not currently have access to this content.