Critical condensate saturation, Scc, is a key parameter for the evaluation of well deliverability in gas condensate reservoirs. We propose a new method to determine Scc by performing three-phase flow simulations with three-dimensional (3D) pore network model. First, we establish a network model with random fractal methodology. Second, based on the condensation model in the literature of Li and Firoozabadi, we develop a modified condensation model to describe the condensation phenomenon of gas with connate water in the porous medium. The numerical model is verified by experimental measurements in the literature. Then, we investigate the influence of different factors on the critical condensate saturation, including micro pore structure (pore radius and fractal dimension), condensate gas/oil interfacial tension (IFT), and flow rate at different irreducible water saturation, Swi. The simulation results show that Scc decreases with increasing of average pore radius, but increases with increasing of fractal dimension. In the case of the same gas/oil interfacial tension, the higher the connate water saturation, the higher the critical condensate saturation. There is a critical gas/oil interfacial tension, below the critical value, the critical condensate saturation increases drastically with increasing of interfacial tension while it keeps almost unchanged when the interfacial tension is above the critical value. The critical condensate saturation decreases with increasing in the gas flow rate. High capillary number results in low critical condensate saturation. Reasonable increase in producing pressure drop can effectively improve the flow capacity of condensate oil.

References

References
1.
Li
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Phenomenological Modeling of Critical Condensate Saturation and Relative Permeabilities in Gas/Condensate Systems
,”
SPE J.
,
5
(
2
), pp.
138
147
.
2.
Mohammadi-Khanaposhtani
,
M.
,
Bahramian
,
A.
, and
Pourafshary
,
P.
,
2014
, “
Disjoining Pressure and Gas Condensate Coupling in Gas Condensate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
3.
Zolfaghari
,
A.
, and
Ayatollahi
,
Sh.
,
2006
, “
Simulation Predicts Condensate Formation in Aghar Field
,”
Oil Gas J.
,
104
(
47
), pp. 50–54.
4.
Al Ghamdi
,
B. N.
, and
Ayala
,
L. F. H.
,
2017
, “
Evaluation of Transport Properties Effect on the Performance of Gas-Condensate Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032910
.
5.
Afidick
,
D.
, and
Kaczorowski
,
N. J.
, and
Bette
,
S.
,
1984
, “
Production Performance of a Retrograde Gas Reservoir: A Case Study of the Arun Field
,” SPE Asia Pacific Oil and Gas Conference, Melbourne, Australia, Nov. 7–10,
SPE
Paper No. SPE-28749-MS.
6.
Barnum
,
R. S.
,
Brinkman
,
F. P.
,
Richardson
,
T. W.
, and
Spillette, A. G.
,
1995
, “
Gas Condensate Reservoir Behavior: Productivity and Recovery Reduction Due to Condensation
,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Oct. 22–25,
SPE
Paper No. SPE-30767-MS.
7.
Kalaydjian
,
F. J.-M.
,
Bourbiaux
,
B. J.
, and
Lombard
,
J.-M.
,
1996
, “
Predicting Gas Condensate Reservoir Performance: How Flow Parameters are Altered When Approaching Production Wells
,” SPE Annual Technical Conference and Exhibition, Denver, CO, Oct. 6–9,
SPE
Paper No. SPE-36715-MS.
8.
Ahmadi
,
M. A.
,
Ebadi
,
M.
,
Marghmaleki
,
P. S.
, and
Fouladi, M. M.
,
2014
, “
Evolving Predictive Model to Determine Condensate-to-Gas Ratio in Retrograded Condensate Gas Reservoirs
,”
Fuel
,
124
, pp.
241
257
.
9.
Smits
,
R. M. M.
,
Van der Post
,
N.
, and
Shaidi
,
S. M.
,
2001
, “
Accurate Prediction of Well Requirement in Gas Condensate Fields
,” SPE Middle East Oil Show, Manama, Bahrain, Mar. 17–20,
SPE
Paper No. SPE-68173-MS.
10.
EI Banbi
,
A. H.
,
McCain
,
W. D.
, and
Semmelbeck
,
M. E.
,
2000
, “
Investigation of Well Productivity in Gas Condensate Reservoirs
,” SPE/CERI Gas Technology Symposium, Calgary, AB, Canada, Apr. 3–5,
SPE
Paper No. SPE-59773-MS.
11.
Gao
,
H.
, and
Li
,
H. A.
,
2016
, “
Pore Structure Characterization, Permeability Evaluation and Enhanced Gas Recovery Techniques of Tight Gas Sandstones
,”
J. Nat. Gas Sci. Eng.
,
28
, pp.
536
547
.
12.
Li
,
Q.
,
Li
,
X.
,
Zan
,
K.
,
Song, Z.
,
Shi, J.
, and
Wu, K.
,
2013
, “
Experimental Research of Critical Condensate Saturation and Flow Characteristics of Gas Condensate Reservoir
,”
Pet. Sci. Technol.
,
31
(
13
), pp.
1361
1370
.
13.
Li
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Experimental Study of Wettability Alteration to Preferential Gas-Wetness in Porous Media and Its Effect
,”
SPE Reservoir Eval. Eng.
,
3
(2), pp.
139
149
.
14.
Gravier
,
J. F.
,
Lemouzy
,
P.
,
Barroux
,
C.
, and
Lemouzy, P.
,
1986
, “
Determination of Gas-Condensate Relative Permeability on Whole Cores Under Reservoir Conditions
,”
SPE Form. Eval.
,
1
(1), pp. 9–15.
15.
Knapp
,
C. R.
,
1965
, “
Gas-Oil Relative Permeability Ratio Correlation From Laboratory Data
,”
J. Pet. Technol.
,
17
(
9
), pp.
1111
1122
.
16.
Delclaud
,
J.
,
Rochon
,
J.
, and
Nectoux
,
A.
,
1987
, “
Investigation of Gas-Oil Relative Permeability, High Permeability Oil Reservoir Application
,” SPE Annual Technical Conference and Exhibition, Dallas, TX, Sept. 27–30,
SPE
Paper No. SPE-16966-MS.
17.
Danesh
,
A.
,
Henderson
,
G. D.
, and
Peden
,
J. M.
,
1991
, “
Experimental Investigation of Critical Condensate and Its Dependence on Connate Water in Water-Wet Rocks
,”
SPE Reservoir Engineering
,
6
(
3
), pp.
336
342
.
18.
Morel
,
D. C.
,
Lomer
,
J. F.
,
Morineau
,
Y. M.
, and
Putz
,
A. G.
,
1992
, “
Mobility of Hydrocarbon Liquids in Gas Condensate Reservoir: Interpretation of Depletion Laboratory Experiments
,” SPE Annual Technical Conference and Exhibition, Washington, DC, Oct. 4–7,
SPE
Paper No. SPE-24939-MS.
19.
Ali
,
J. K.
,
Butler
,
S.
,
Allen
,
L.
, and
Wardle
,
P.
,
1993
, “
The Influence of Interfacial Tension on Liquid Mobility in Gas Condensate Systems
,” Offshore Europe, Aberdeen, UK, Sept. 7–10,
SPE
Paper No. SPE-26783-MS.
20.
Mohammadi
,
S.
,
Sorbie
,
K. S.
,
Danesh
,
A.
, and
Peden
,
J. M.
,
1990
, “
Pore-Level Modeling of Gas-Condensate Flow Through Horizontal Porous Media
,” SPE Annual Technical Conference and Exhibition, New Orleans, LA, Sept. 23–26,
SPE
Paper No. SPE-20479-MS.
21.
Fang
,
F.
,
Firoozabadi
,
A.
,
Abbaszadeh
,
M.
, and
Radke
,
C.
,
1996
, “
A Phenomenological Modeling of Critical Condensate Saturation
,” SPE Annual Technical Conference and Exhibition, Denver, CO, Oct. 6–9,
SPE
Paper No. SPE-36716-MS.
22.
Wang
,
X.
, and
Mohanty
,
K. K.
,
1999
, “
Critical Condensate Saturation in Porous Media
,”
J. Colloid Interface Sci.
,
214
(
2
), pp.
416
426
.
23.
Fatt
,
I.
,
1956
, “
The Network Model of Porous Media
,”
Trans. AIME.
,
207
, pp.
144
181
.
24.
Okabe
,
H.
, and
Blunt
,
M. J.
,
2005
, “
Pore Space Reconstruction Using Multiple-point Statistics
,”
J. Pet. Sci. Eng.
,
46
(1–2), pp.
121
137
.
25.
Piri
,
M.
, and
Blunt
,
M. J.
,
2005
, “
Three-Dimensional Mixed-Wet Random Pore-Scale Network Modeling of Two-and Three-Phase Flow in Porous Media—I: Model Description
,”
Phys. Rev. E
,
71
(
2
), p.
026301
.
26.
Piri
,
M.
, and
Blunt
,
M. J.
,
2005
, “
Three-Dimensional Mixed-Wet Random Pore-Scale Network Modeling of Two-and Three-Phase Flow in Porous Media—II: Results
,”
Phys. Rev. E
,
71
(
2
), p.
026302
.
27.
Byrnes
,
P. A.
,
Cluff
,
R. M.
, and
Webb
,
J. C.
,
2009
, “
Analysis of Critical Permeability, Capillary and Electrical Properties for Mesaverde Tight Gas Sandstones From Western U.S. Basins: Final Scientific
,” Technical Report, pp. 249–250.
28.
Idowu
,
N. A.
,
2009
, “
Pore-Scale Modeling: Stochastic Network Generation and Modeling of Rate Effects in Water Flooding
,” Ph.D. thesis, Imperial College London, London.
29.
Jamiolahmady
,
M.
,
Danesh
,
A.
,
Tehrani
,
D. H.
, and
Ducan, D. B.
,
2003
, “
Positive Effect of Flow Velocity on Gas Condensate Relative Permeability: Network Modelling and Comparison With Experimental Results
,”
Transp. Porous Media
,
52
(
2
), pp.
159
183
.
30.
Blunt Martin
,
J.
,
2001
, “
Flow in Porous Media–Pore-Network Models and Multiphase Flow
,”
J. Colloid Interface Sci.
,
6
(
3
), pp.
197
207
.
31.
Hidajat
,
I.
,
Rastogi
,
A.
,
Singh
,
M.
, and
Mohanty, K. K.
,
2002
, “
Transport Properties of Porous Media Reconstructed From Thin-Sections
,”
SPE J.
,
7
(1), pp. 40–48.
32.
Oren
,
P. E.
, and
Bakke
,
S.
,
2002
, “
Process Based Reconstruction of Sandstones and Prediction of Transport Properties
,”
Transp. Porous Media
,
46
(2–3), pp.
311
343
.
33.
Okabe
,
H.
, and
Blunt
,
M. J.
,
2004
, “
Prediction of Permeability for Porous Media Reconstructed Using Multiple-Point Statistics
,”
Phys. Rev. E
,
70
(
6
), p.
066135
.
34.
Rhodes
,
E. M.
,
Bijeljic
,
B.
, and
Blunt
,
M. J.
,
2007
, “
A Rigorous Pore-to-Field-Scale Simulation Method for Single-Phase Flow Based on Continuous-Time Random Walks
,” SPE Reservoir Simulation Symposium, Houston, TX, Feb. 26–28,
SPE
Paper No. SPE-106434-MS.
35.
Juhua
,
L.
, and
Bin
,
Z.
,
2015
, “
Digital Core and Pore Network Model Reconstruction Based on Random Fractal Theory
,”
Int. J. Energy Stat.
,
3
, p. 1550001.
36.
Alreshedan
,
F.
, and
Kantzas
,
A.
,
2016
, “
Investigation of Permeability, Formation Factor, and Porosity Relationships for Mesaverde Tight Gas Sandstones Using Random Network Models
,”
J. Pet. Explor. Prod. Technol.
,
6
(
3
), pp.
545
554
.
37.
Krummel
,
A. T.
,
Datta
,
S. S.
,
Munster
,
S.
, and
Weitz
,
D. A.
,
2013
, “
Visualizing Multiphase Flow and Trapped Fluid Configurations in a Model Three-Dimensional Porous Medium
,”
J. AIChE
,
59
(
3
), pp.
1022
1029
.
38.
Nikooey
,
A.
,
Manshad
,
A. K.
, and
Ashoori
,
S.
,
2015
, “
Dynamic Pore Scale Modeling of Asphaltene Deposition in Porous Media
,”
Pet. Sci. Technol.
,
33
(
8
), pp.
908
919
.
39.
[39]
Jisheng
,
Y.
, and
Jianyi
,
L.
,
1994
,
Gas Recovery Utility Computing
,
Petroleum Industry Press
,
Beijing, China
.
40.
Zolfaghari
,
A.
, and
Piri
,
M.
,
2017
, “
Pore-Scale Network Modeling of Three-Phase Flow Based on Thermodynamically Consistent Threshold Capillary Pressures—I: Cusp Formation and Collapse
,”
Transp. Porous Media
,
116
(
3
), pp.
1093
1137
.
41.
Batchelor
,
G. K.
,
1991
,
An Introduction of Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
42.
Ransohoff
,
T. C.
, and
Radke
,
C. J.
,
1988
, “
Laminar Flow of a Wetting Liquid Along the Corners of a Predominantly Gas-Occupied Noncircular Pore
,”
Colloid Interface Sci.
,
121
(
2
), pp.
392
401
.
43.
Fenwick
,
D. H.
, and
Blunt
,
M. J.
,
1998
, “
Three Dimensional Modeling of Three-Phase Imbibition and Drainage
,”
Adv. Water Resour.
,
21
(
2
), pp.
121
143
.
44.
Jiang
,
Y. W.
,
Qi
,
Z. L.
,
Guo
,
P.
,
Sun
,
L.
, and
Bi
,
J.
,
2006
, “
Laboratory Study on the Critical Flow Saturation Degree of Condensate Oil in Low-Permeability Condensate Gas Reservoir
,”
Nat. Gas Ind.
,
26
, pp.
96
99
.
45.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2016
, “
Modeling of Hydraulic Fracture Propagation in Shale Gas Reservoir: A Three-Dimensional, Two-Phase Model
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012903
.
You do not currently have access to this content.