In order to eliminate pollution from ultra low calorific value gas (ULCVG) of methane and achieve energy recovery simultaneously, a novel reactor with the function of regenerator and catalytic combustor named rotary regenerative type catalytic combustion reactor is studied. The reactor walls which store and reject heat alternatively can preheat incoming ULCVG to the ignition temperature of methane, and catalytic combustion occurs rapidly. According to the features of the reactor such as rotation and catalytic combustion, considering the conjugate heat exchange, the characteristics of this reactor were calculated and analyzed with the help of computational fluid dynamics (CFD). The results show that the ULCVG can be oxidized as a primary fuel, with the methane conversion above 91%, and the feasibility of this reactor is proved in theory. The reactor can continuously generate high-temperature gas (1035 K–1200 K) which can be used by the heat consumption unit (HCU) such as turbines, boilers, and solid oxide fuel cell services. Besides, the outlet gas and exhaust gas temperature vary roughly linearly with time, and this rule is useful to estimate the outlet temperature. Periodical rotation not only provides high-temperature zone which is beneficial to catalytic combustion, but also avoids further heat accumulation.

References

References
1.
Yusuf
,
R. O.
,
Noor
,
Z. Z.
,
Abba
,
A. H.
,
Hassan
,
M. A. A.
, and
Din
,
M. F. M.
,
2012
, “
Methane Emission by Sectors: A Comprehensive Review of Emission Sources and Mitigation Methods
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5059
5070
.
2.
Karakurt
,
I.
,
Aydin
,
G.
, and
Aydiner
,
K.
,
2011
, “
Mine Ventilation Air Methane as a Sustainable Energy Source
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1042
1049
.
3.
Chen
,
L.
,
Song
,
P.
,
Long
,
W.
,
Feng
,
Ly.
,
Zhang
,
J.
, and
Wang
,
Y.
,
2017
, “
Experimental Study of Operation Stability of a Spark Ignition Engine Fueled With Coal Bed Gas
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
044501
.
4.
Ferreira
,
S. B.
, and
Pilidis
,
P.
,
2001
, “
Comparison of Externally Fired and Internal Combustion Gas Turbines Using Biomass Gas
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
291
296
.
5.
Su
,
S.
,
Beath
,
A.
,
Guo
,
H.
, and
Mallett
,
C.
,
2005
, “
An Assessment of Mine Methane Mitigation and Utilisation Technologies
,”
Prog. Energy Combust. Sci.
,
31
(
2
), pp.
123
170
.
6.
Warmuzinski
,
K.
,
2008
, “
Harnessing Methane Emissions From Coal Mining
,”
Process Saf. Environ. Prot.
,
86
(
5
), pp.
315
320
.
7.
Spadaccini
,
C. M.
,
Peck
,
J.
, and
Waitz
, I
. A.
,
2007
, “
Catalytic Combustion Systems for Microscale Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
49
60
.
8.
Ralph
,
A. D.
,
Betta
,
J. C. S.
, and
David
,
K. Y.
,
1995
, “
Catalytic Combustion Technology to Achieve Ultra Low NOx, Emissions: Catalyst Design and Performance Characteristics
,”
Catal. Today
,
26
(
3–4
), pp.
329
335
.
9.
Arai
,
M.
,
Amagai
,
K.
, and
Mogi
,
T.
,
2001
, “
Catalytic Combustion of Pre-Vaporized Liquid Fuel
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
44
49
.
10.
Boehman
,
A. L.
,
Simons
,
J. W.
,
Niksa
,
S. J.
, and
McCarty
,
J. G.
,
1997
, “
Dynamic Stress Behavior in Catalytic Combustors
,”
ASME J. Energy Resour. Technol.
,
119
(
3
), pp.
164
170
.
11.
Su
,
S.
, and
Yu
,
X.
,
2015
, “
A 25 kWe Low Concentration Methane Catalytic Combustion Gas Turbine Prototype Unit
,”
Energy
,
79
, pp.
428
438
.
12.
Yin
,
J.
,
Weng
,
Y. W.
, and
Zhu
,
J. Q.
,
2015
, “
Numerical and Experimental Investigation on the Performance of Lean Burn Catalytic Combustion for Gas Turbine Application
,”
J. Therm. Sci.
,
24
(
2
), pp.
185
193
.
13.
Su
,
S.
, and
Agnew
,
J.
,
2006
, “
Catalytic Combustion of Coal Mine Ventilation Air Methane
,”
Fuel
,
85
(
9
), pp.
1201
1210
.
14.
Carroni
,
R.
, and
Griffin
,
T.
,
2010
, “
Catalytic, Hybrid Lean Combustion for Gas Turbines
,”
Catal. Today
,
155
(
1
), pp.
2
12
.
15.
Skiepko
,
T.
, and
Shah
,
R. K.
,
2004
, “
A Comparison of Rotary Regenerator theory and Experimental Results for an Air Preheater for a Thermal Power Plant
,”
Exp. Therm. Fluid Sci.
,
28
(
2
), pp.
257
264
.
16.
Wilson
,
D. G.
, and
Ballou
,
J. M.
,
2006
, “
Design and Performance of a High-Temperature Regenerator Having Very High Effectiveness, Low Leakage and Negligible Seal Wear
,”
ASME
Paper No. GT2006-90095.
17.
Hua
,
J.
,
Wu
,
M.
, and
Kumar
,
K.
,
2005
, “
Numerical Simulation of the Combustion of Hydrogen–Air Mixture in Micro-Scaled Chambers—Part I: Fundamental Study
,”
Chem. Eng. Sci.
,
60
(
13
), pp.
3497
3506
.
18.
Deng
,
X. W.
,
Xiong
,
Y.
,
Yin
,
H.
, and
Gao
,
Q. S.
,
2016
, “
Numerical Study of the Effect of Nozzle Configurations on Characteristics of MILD Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042212
.
19.
Martinez
,
D. M.
,
Cluff
,
D. L.
, and
Jiang
,
X.
,
2014
, “
Numerical Investigation of the Burning Characteristics of Ventilation Air Methane in a Combustion Based Mitigation System
,”
Fuel
,
133
, pp.
182
193
.
20.
Benedetto
,
A. D.
,
Sarli
,
V. D.
, and
Russo
,
G.
,
2010
, “
Effect of Geometry on the Thermal Behavior of Catalytic Micro-Combustors
,”
Catal. Today
,
155
(
1–2
), pp.
116
122
.
21.
Mazumder
,
S.
,
2007
, “
Modeling Full-Scale Monolithic Catalytic Converters: Challenges and Possible Solutions
,”
ASME J. Heat Transfer
,
129
(
4
), pp.
526
535
.
22.
Ohadi
,
M. M.
, and
Buckley
,
S. G.
,
2001
, “
High Temperature Heat Exchangers and Microscale Combustion Systems: Applications to Thermal System Miniaturization
,”
Exp. Therm. Fluid Sci.
,
25
(
5
), pp.
207
217
.
23.
Mazumder
,
S.
, and
Grimm
,
M.
,
2007
, “
Numerical Investigation of Radiation Effects in Catalytic Combustion
,”
ASME
Paper No. HT2007-32460.
24.
Deutschmann
,
O.
,
Schmidt
,
R.
,
Behrendt
,
F.
, and
Warnatz
,
J.
,
1996
, “
Numerical Modeling of Catalytic Ignition
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
1747
1754
.
25.
Hayes
,
R. E.
, and
Kolaczkowski
,
S. T.
,
1999
, “
A Study of Nusselt and Sherwood Numbers in a Monolith Reactor
,”
Catal. Today
,
47
(
1–4
), pp.
295
303
.
26.
Norton
,
D. G.
, and
Vlachos
,
D. G.
,
2004
, “
A CFD Study of Propane/Air Microflame Stability
,”
Combust. Flame
,
138
(
1–2
), pp.
97
107
.
You do not currently have access to this content.