More precise measurements of the fuel injection process can enable better combustion control and more accurate predictions resulting in a reduction of fuel consumption and toxic emissions. Many of the current methods researchers are using to investigate the transient liquid fuel sprays are limited by cross-sensitivity when studying regions with both liquid and vapor phases present (i.e., upstream of the liquid length). The quantitative rainbow schlieren technique has been demonstrated in the past for gaseous fuel jets and is being developed here to enable study of the spray near the injector. In this work, an optically accessible constant pressure flow rig (CPFR) and a modern common rail diesel injector are used to obtain high-speed images of vaporizing fuel sprays at elevated ambient temperatures and pressures. Quantitative results of full-field equivalence ratio measurements are presented as well as more traditional measurements such as vapor penetration and angle for a single condition (13 bar, 180 °C normal air) using n-heptane injected through a single hole (0.1 mm diameter) common rail fuel injector at 1000 bar fuel injection pressure. This work serves as a proof of concept for the rainbow schlieren technique being applied to vaporizing fuel sprays, and full details of the image-processing routine are provided. The ability of the imaging technique combined with the constant pressure flow rig make this approach ideal for generating large data sets in short periods of time for a wide range of operating conditions.

References

References
1.
Dec
,
J. E.
,
1997
, “
A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging
,”
SAE
Technical Paper No. 970873.
2.
Siebers
,
D. L.
,
1999
, “
Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization
,”
SAE
Technical Paper No. 1999-01-0528.
3.
Pickett
,
L. M.
,
Manin
,
J.
,
Genzale
,
C. L.
,
Siebers
,
D. L.
,
Musculus
,
M. P.
, and
Idicheria
,
C. A.
,
2011
, “
Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction
,”
SAE Int. J. Engines
,
4
(
1
), pp.
764
799
.
4.
Idicheria
,
C. A.
, and
Pickett
,
L. M.
,
2007
, “
Quantitative Mixing Measurements in a Vaporizing Diesel Spray by Rayleigh Imaging
,”
SAE
Technical Paper No. 2007-01-0647.
5.
Musculus
,
M. P.
,
Lachaux
,
T.
,
Pickett
,
L. M.
, and
Idicheria
,
C. A.
,
2007
, “
End-of-Injection Over-Mixing and Unburned Hydrocarbon Emissions in Low-Temperature-Combustion Diesel Engines
,”
SAE
Technical Paper No. 2007-01-0907.
6.
Pickett
,
L. M.
,
Kook
,
S.
, and
Williams
,
T. C.
,
2009
, “
Transient Liquid Penetration of Early-Injection Diesel Sprays
,”
SAE Int. J. Engines
,
2
(
1
), pp.
785
804
.
7.
Musculus
,
M. P.
, and
Kattke
,
K.
,
2009
, “
Entrainment Waves in Diesel Jets
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1170
1193
.
8.
Hargather
,
M. J.
, and
Settles
,
G. S.
,
2012
, “
A Comparison of Three Quantitative Schlieren Techniques
,”
Opt. Lasers Eng.
,
50
(
1
), pp.
8
17
.
9.
Al-Ammar
,
K.
,
Agrawal
,
A.
,
Gollahalli
,
S.
, and
Griffin
,
D.
,
1998
, “
Application of Rainbow Schlieren Deflectometry for Concentration Measurements in an Axisymmetric Helium Jet
,”
Exp. Fluids
,
25
(
2
), pp.
89
95
.
10.
Agrawal
,
A. K.
,
Butuk
,
N. K.
,
Gollahalli
,
S. R.
, and
Griffin
,
D.
,
1998
, “
Three-Dimensional Rainbow Schlieren Tomography of a Temperature Field in Gas Flows
,”
Appl. Opt.
,
37
(
3
), pp.
479
485
.
11.
Agrawal
,
A.
,
Alammar
,
K.
, and
Gollahalli
,
S.
,
2002
, “
Application of Rainbow Schlieren Deflectometry to Measure Temperature and Oxygen Concentration in a Laminar Gas-Jet Diffusion Flame
,”
Exp. Fluids
,
32
(
6
), pp.
689
691
.
12.
Kolhe
,
P. S.
, and
Agrawal
,
A. K.
,
2009
, “
Density Measurements in a Supersonic Microjet Using Miniature Rainbow Schlieren Deflectometry
,”
AIAA J.
,
47
(
4
), pp.
830
838
.
13.
Wang
,
J.
,
Mirynowski
,
E. M.
,
Bittle
,
J. A.
, and
Fisher
,
B. T.
,
2016
, “
Experimental Measurements of n-Heptane Liquid Penetration Distance and Spray Cone Angle for Steady Conditions Relevant to Early Direct-Injection Low-Temperature Combustion in Diesel Engines
,”
Int. J. Engine Res.
,
17
(
4
), pp.
371
390
.
14.
James
,
K. C.
,
Wang
,
J.
,
Maynard
,
M. C.
,
Morris
,
Z. B.
, and
Fisher
,
B. T.
,
2014
, “
Development of a High-Pressure, High-Temperature, Optically Accessible Continuous-Flow Vessel for Fuel-Injection Experiments
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091512
.
15.
Murphy
,
M. J.
,
Taylor
,
J. D.
, and
McCormick
,
R. L.
,
2004
, “
Compendium of Experimental Cetane Number Data
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/SR-540-36805
https://www.osti.gov/scitech/biblio/1086353.
16.
Turns
,
S.
,
2012
,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
17.
Goldstein
,
R. J.
, and
Kuehn
,
T.
,
1996
, “
Optical Systems for Flow Measurement: Shadowgraph, Schlieren, and Interferometric Techniques
,”
Fluid Mechanics Measurement
,
Taylor and Francis
, Philadelphia, PA, pp.
451
508
.
18.
Rubinstein
,
R.
, and
Greenberg
,
P.
,
1994
, “
Rapid Inversion of Angular Deflection Data for Certain Axisymmetric Refractive Index Distributions
,”
Appl. Opt.
,
33
(
7
), pp.
1141
1444
.
19.
Vasil'ev
,
L.
,
1971
,
Schlieren Methods
,
Israel Program for Scientific Translations
,
New York/Jerusalem, Israel/London
.
20.
Yates
,
L.
,
1993
, “
Constructed Interferograms, Schlieren and Shadowgraphs: A User's Manual
,” Eloret Institute, Sunnyvale, CA, Report No. NASA CR-194530.
21.
Gardiner
,
W.
,
Hidaka
,
Y.
, and
Tanzawa
,
T.
,
1981
, “
Refractivity of Combustion Gases
,”
Combust. Flame
,
40
, pp.
213
219
.
You do not currently have access to this content.