Combustion processes of two fuels, pulverized coal and biomass, in furnaces take place at steady state. Combustion of condensed fuels involves one-way interfacial flux due to phenomena in the condensed phase (evaporation or pyrolysis) and reciprocal ones (heterogeneous combustion and gasification). Many of the species injected in the gas phase are later involved in gas phase combustion. This paper presents results of combustion process of two-phase charge contained coal and wetted biomass, where the carrier was the air with given flow rate. The furnace has three inlets with assumed inlet flow rate of coal, biomass, and air, and combustion process takes place in the furnace fluidized space. The simulation of such combustion process was carried out by numerical code of open source computational fluid dynamics (CFD) program code_saturne. For both fuels, the moist biomass with following mass contents: C = 53%, H = 5.8%, O = 37.62%, ash = 3.6, and mean diameter of molecules equal to 0.0008 m and pulverized coal with following mass contents: C = 76.65%, H = 5.16%, O = 9.9%, ash = 6.21%, and mean molecule diameter 0.000025 m were used. Devolatilization process with kinetic reactions was taken into account. Distribution of the main combustion product in furnace space is presented with disappearance of the molecules of fuels. This paper presents theoretical description of the two-phase charge, specification of the thermodynamic state of the charge in inlet boundaries and furnace space, and thermal parameters of solid fuel molecules obtained from the open source postprocessor paraview.

References

References
1.
Hall
,
D. O.
,
Rosillo-Calle
,
F.
, and
de Groot
,
P.
,
1992
, “
Biomass Energy Lessons From Case Studies in Developing Countries
,”
Energy Policy
,
20
(
1
), pp.
62
73
.
2.
McGowan
,
F.
,
1991
, “
Controlling the Greenhouse Effect: The Role of Renewables
,”
Energy Policy
,
19
(
2
), pp.
110
118
.
3.
Demirbas
,
A.
,
2004
, “
Combustion Characteristics of Different Biomass Fuels
,”
Prog. Energy Combust. Sci.
,
30
(
2
), pp.
219
230
.
4.
Glodek
,
E.
,
2010
, “
Combustion and Co-Combustion of Biomass: Guide (Spalanie i wspólspalanie biomasy: Poradnik)
,” Institute of Ceramics and Building Materials, Opole, Poland.
5.
Sahu
,
S.
,
Chakraborty
,
N.
, and
Sarkar
,
P.
,
2014
, “
Coal—Biomass Co-Combustion: An Overview
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
575
586
.
6.
Hughes
,
E.
,
2000
, “
Biomass Cofiring: Economics, Policy and Opportunities
,”
Biomass Bioenergy
,
19
(
6
), pp.
457
465
.
7.
Saidur
,
R.
,
Abdelaziz
,
E. A.
,
Demirbas
,
A.
,
Hossain
,
M. S.
, and
Mekhilef, S.
,
2011
, “
A Review on Biomass as a Fuel for Boilers
,”
Renewable Sustainable Energy Rev.
,
15
(
5
), pp.
2262
2289
.
8.
Tillman
,
D. A.
,
2000
, “
Cofiring Benefits for Coal and Biomass
,”
Biomass Bioenergy
,
19
(
6
), pp.
363
364
.
9.
Narayanan
,
K.
, and
Natarajan
,
E.
,
2007
, “
Experimental Studies on Cofiring of Coal and Biomass Blends in India
,”
Renewable Energy
,
32
(
15
), pp.
2548
2558
.
10.
Williams
,
A.
,
Pourkashanian
,
M.
, and
Jones
,
J.
,
2001
, “
Combustion of Pulverised Coal and Biomass
,”
Prog. Energy Combust. Sci.
,
27
(
6
), pp.
587
610
.
11.
Baxter
,
L.
,
2011
, “
Biomass-Coal Cofiring: An Overview of Technical Issues
,”
Solid Biofuels for Energy
,
Springer
, London, pp.
43
73
.
12.
Baxter
,
L.
,
2005
, “
Biomass-Coal Co-Combustion: Opportunity for Affordable Renewable Energy
,”
Fuel
,
84
(
10
), pp.
1295
1302
.
13.
Xie
,
J.-J.
,
Yang
,
X.-M.
,
Zhang
,
L.
,
Ding
,
T.-L.
,
Song
,
W.-L.
, and
Lin
,
W.-G.
,
2007
, “
Emissions of SO2, NO and N2O in a Circulating Fluidized Bed Combustor During Co-Firing Coal and Biomass
,”
J. Environ. Sci.
,
19
(
1
), pp.
109
116
.
14.
Kazanc
,
F.
,
2011
, “
Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments
,”
Energy Fuels
,
25
(
7
), pp.
2850
2861
.
15.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
16.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Curtailing the Generation of Sulfur Dioxide and Nitrogen Oxide Emissions by Blending and Oxy-Combustion of Coals
,”
Fuel
,
181
, pp.
772
784
.
17.
Badzioch
,
S.
, and
Hawksley
,
P.
,
1970
, “
Kinetics of Thermal Decomposition of Pulverized Coal Particles
,”
Ind. Eng. Chem. Process Des. Dev.
,
9
(
4
), pp.
521
530
.
18.
Kobayashi
,
H.
,
1976
, “
Devolatilization of Pulverized Coal at High Temperature
,”
Doctoral thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/26754
19.
Kobayashi
,
H.
,
Howard
,
J. B.
, and
Sarofim
,
A. F.
,
1977
, “
Coal Devolatilization in High Temperatures
,”
Symp. Combust.
,
16
(
1
), pp.
411
425
.
20.
Maffei
,
T.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Ranzi
,
E.
, and
Faravelli
,
T.
,
2013
, “
Predictive One Step Kinetic Model of Coal Pyrolysis for CFD Applications
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2401
2410
.
21.
Zhang
,
Y.
,
Xu
,
X.
, and
Zuo
,
Y.
,
1999
, “
Experiments and Modelling of Coal Pyrolysis Under Fluidized Bed Conditions
,”
J. Therm. Sci.
,
8
(
3
), pp.
202
206
.
22.
Li
,
J.
,
Paul
,
M. C.
,
Younger
,
P. L.
,
Watson
,
I.
,
Hossain
,
M.
, and
Welch
,
S.
,
2015
, “
Characterization of Biomass Combustion at High Temperature Based on Upgraded Single Particle Model
,”
Appl. Energy
,
156
, pp.
749
755
.
23.
Authier
,
O.
,
Thunin
,
E.
,
Plion
,
P.
,
Schönnenbeck
,
C.
,
Leyssens
,
G.
,
Brilhac
,
J.-F.
, and
Porcheron
,
L.
,
2014
, “
Kinetic Study of Pulverized Coal Devolatilization for Boiler CFD Modeling
,”
Fuel
,
122
, pp.
254
260
.
24.
Zahirovic
,
S.
,
Scharler
,
R.
, and
Obenberger
,
I.
,
2004
, “
Advanced CFD Modeling of Pulverized Biomass Combustion
,” University of Technology, Graz, Austria, accessed June 16, 2017, http://www.bios-bioenergy.at/uploads/media/Paper-Zahirovic-CFDPulvBiomassComb-Vancouver-2004-09-10.pdf
25.
Jenkins
,
B. M.
,
Baxter
,
L. L.
,
Miles
,
T. R.
, and
Miles
,
T. R.
,
1998
, “
Combustion Properties of Biomass
,”
Fuel Process. Technol.
,
54
, pp.
17
46
.
26.
Jugola
,
P.
, and
Marko Huttunen
,
A.
,
2013
, “
CFD Simulation of Biofuel and Coal Co-Combustion in a Pulverized Coal Fired Furnace
,” International Flame Research Foundation, The Finnish and Swedish National Committees, Livorno, Italy, accessed June 19, 2017, http://www.ffrc.fi/FlameDays_2013/Papers/Jukola1.pdf
27.
Nussbaumer
,
T.
,
2003
, “
Combustion and Co-Combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction
,”
Energy Fuels
,
17
(
6
), pp.
1510
1521
.
28.
Carra
,
S.
,
2009
, “
Homogeneous and Heterogeneous Combustion
,” Politechnica di Milano, Milan, Italy, accessed June 16, 2017, www.treccani.it/export/sites/default/./413_430_ing.pdf
29.
EDF&RD
,
2015
, “
Code_Saturne 4.2.0: Theory Guide
,” EDF&RD, Chatou Cedex, France, accessed June 19, 2017, www.code-saturne.org
30.
Stolarski
,
M.
, and
Krzyzaniak
,
M.
,
2011
, “
Wartosc Opalowa i Sklad Elementarny Biomasy Wierzby Produkowanej Systemem Eko-Salix
,”
Fragm. Agron.
,
28
(
4
), pp.
86
95
.
You do not currently have access to this content.