Gasification is the core unit of coal-based production systems and is also the site where one of the largest exergy destruction occurs. This paper reveals the exergy destruction mechanism of carbon gasification through a combined analysis of the kinetic method and the energy utilization diagram (EUD). Instead of a lumped exergy destruction using the traditional “black-box” and other models, the role of each reaction in carbon gasification is revealed. The results show that the exergy destruction caused by chemical reactions accounts for 86.3% of the entire carbon gasification process. Furthermore, approximately 90.3% of exergy destruction of chemical reactions is caused by the exothermal carbon partial oxidation reaction (reaction 1), 6.0% is caused by the carbon dioxide gasification reaction (reaction 2), 2.4% is caused by the steam gasification reaction (reaction 3), and 1.3% is caused by other reactions under the base condition. With increasing O2 content α and decreasing steam content β, the proportion of exergy destruction from reaction 1 decreases due to the higher gasification temperature (a higher energy level of energy acceptor in EUD), while the proportions of other reactions increase. This shows that the chemical efficiency is optimal when the extent of reactions 1 and 3 is equal and the shift reaction extent approaches zero at the same time.

References

References
1.
Gao
,
L.
,
Jin
,
H. G.
,
Liu
,
Z. L.
, and
Zheng
,
D. X.
,
2004
, “
Exergy Analysis of Coal-Based Polygeneration System for Power and Chemical Production
,”
Energy
,
29
(
12
), pp.
2359
2371
.
2.
Liu
,
G. J.
,
Li
,
Z.
,
Huang
,
H.
, and
Ni
,
W. D.
,
2008
, “
Thermodynamic Analysis of the Coal Gasification Process
,” J. Tsinghua Univ. (Sci. Technol.),
48
(
5
), pp.
844
847
.
3.
Govind
,
R.
, and
Shah
,
J.
,
1984
, “
Modeling and Simulation of an Entrained Flow Coal Gasifier
,”
AIChE J.
,
30
(
1
), pp.
79
92
.
4.
Wu
,
X. C.
,
Wang
,
Q. H.
,
Luo
,
Z. Y.
,
Fang
,
M. X.
, and
Ceb
,
K.
,
2004
, “
Modelling on Effects of Operation Parameters on Entrained Flow Coal Gasification (I): Model Establishment and Validation
,”
J. Zhejiang Univ. (Eng. Sci.)
,
38
(
10
), pp.
1361
1365
.
5.
Reyes
,
S.
, and
Jensen
,
K. F.
,
1986
, “
Percolation Concepts in Modelling of Gas-Solid Reactions—I: Application to Char Gasification in the Kinetic Regime
,”
Chem. Eng. Sci.
,
41
(
2
), pp.
333
343
.
6.
Zhou
,
W.
,
Luo
,
Y. H.
,
Wu
,
G. J.
, and
Deng
,
J.
,
2009
, “
Modeling the Gasification Characteristics of Char Particle Under Kinetics Control
,”
J. Fuel Chem. Technol.
,
37
(
1
), pp.
31
35
.
7.
Qi
,
X.
,
Guo
,
X.
,
Xue
,
L.
, and
Zheng
,
C.
,
2014
, “
Effect of Iron on Shenfu Coal Char Structure and Its Influence on Gasification Reactivity
,”
J. Anal. Appl. Pyrolysis
,
110
, pp.
401
407
.
8.
Li
,
M.
,
Brouwer
,
J.
,
Rao
,
A. D.
, and
Samuelsen
,
G. S.
,
2011
, “
Application of a Detailed Dimensional Solid Oxide Fuel Cell Model in Integrated Gasification Fuel Cell System Design and Analysis
,”
J. Power Sources
,
196
(
14
), pp.
5903
5912
.
9.
Xiang
,
Y. Q.
, and
Hedden
,
K.
,
1986
, “
Theoretical Calculation of Thermodynamic Equilibrium Compositions in Coal Gasification Process
,”
Gas Heat
, (
1
), pp.
4
10
.
10.
Acharya
,
B.
,
Dutta
,
A.
, and
Basu
,
P.
,
2010
, “
An Investigation Into Steam Gasification of Biomass for Hydrogen Enriched Gas Production in Presence of CaO
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1582
1589
.
11.
Dervisoglu
,
M.
, and
Hortaçsu
,
Ö.
,
1998
, “
An Experimental Study of Coal Gasification
,”
Energy
,
23
(
12
), pp.
1073
1076
.
12.
Li
,
X.
,
Grace
,
J. R.
,
Watkinson
,
A. P.
,
Lim
,
C. J.
, and
Ergüdenler
,
A.
,
2001
, “
Equilibrium Modeling of Gasification: A Free Energy Minimization Approach and Its Application to a Circulating Fluidized Bed Coal Gasifier
,”
Fuel
,
80
(
2
), pp.
195
207
.
13.
Shabbar
,
S.
, and
Janajreh
,
I.
,
2013
, “
Thermodynamic Equilibrium Analysis of Coal Gasification Using Gibbs Energy Minimization Method
,”
Energy Convers. Manage.
,
65
, pp.
755
763
.
14.
Yi
,
Q.
,
Feng
,
J.
, and
Li
,
W. Y.
,
2012
, “
Optimization and Efficiency Analysis of Polygeneration System With Coke-Oven Gas and Coal Gasified Gas by Aspen Plus
,”
Fuel
,
96
, pp.
131
140
.
15.
Zheng
,
L.
, and
Furimsky
,
E.
,
2003
, “
ASPEN Simulation of Cogeneration Plants
,”
Energy Convers. Manage.
,
44
(
11
), pp.
1845
1851
.
16.
Prins
,
M. J.
, and
Ptasinski
,
K.
,
2005
, “
Energy and Exergy Analyses of the Oxidation and Gasification of Carbon
,”
Energy
,
30
(
7
), pp.
982
1002
.
17.
Zheng
,
D. X.
,
Moritsuka
,
H.
, and
Ishida
,
M.
,
1986
, “
Graphic Exergy Analysis for Coal Gasification—Combined Power Cycle Based on the Energy Utilization Diagram
,”
Fuel Process. Technol.
,
13
(
2
), pp.
125
138
.
18.
Wang
,
Y.
,
Zhu
,
S.
,
Gao
,
M.
,
Yang
,
Z.
,
Yan
,
L.
,
Bai
,
Y.
, and
Li
,
F.
,
2016
, “
A Study of Char Gasification in H2O and CO2 Mixtures: Role of Inherent Minerals in the Coal
,”
Fuel Process. Technol.
,
141
(Part 1), pp.
9
15
.
19.
Mühlen
,
H. J.
,
Heinrich
, V
. H. K.
, and
Harald
,
J.
,
1985
, “
Kinetic Studies of Steam Gasification of Char in the Presence of H2, CO2 and CO
,”
Fuel
,
64
(
7
), pp.
944
949
.
20.
Ross
,
D. P.
,
Yan
,
H. M.
, and
Zhang
,
D. K.
,
2004
, “
Modelling of a Laboratory-Scale Bubbling Fluidised-Bed Gasifier With Feeds of Both Char and Propane
,”
Fuel
,
83
(
14
), pp.
1979
1990
.
21.
Watanabe
,
H.
, and
Otaka
,
M.
,
2006
, “
Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier
,”
Fuel
,
85
(
12
), pp.
1935
1943
.
22.
Kaya
,
E.
, and
Köksal
,
M.
,
2016
, “
Investigation of the Predicting Ability of Single-Phase Chemical Equilibrium Modeling Applied to Circulating Fluidized Bed Coal Gasification
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032203
.
23.
Lee
,
J. M.
,
Kim
,
Y. J.
,
Lee
,
W. J.
, and
Kim
,
S. D.
,
1998
, “
Coal-Gasification Kinetics Derived From Pyrolysis in a Fluidized-Bed Reactor
,”
Energy
,
23
(
6
), pp.
475
488
.
24.
Ishida
,
M.
, and
Kawamura
,
K.
,
1982
, “
Energy and Exergy Analysis of a Chemical Process System With Distributed Parameters Based on the Enthalpy-Direction Factor Diagram
,”
Ind. Eng. Chem. Process Des. Dev.
,
21
(
4
), pp.
690
695
.
25.
Ishida
,
M.
, and
Zheng
,
D.
,
1986
, “
Graphic Exergy Analysis of Chemical Process Systems by a Graphic Simulator, GSCHEMER
,”
Comput. Chem. Eng.
,
10
(
6
), pp.
525
532
.
26.
Zheng
,
D.
, and
Cao
,
W.
,
2007
, “
Retrofitting for DME Process by Energy-Flow Framework Diagram
,”
Chem. Eng. Process.: Process Intensif.
,
46
(
1
), pp.
2
9
.
27.
Halama
,
S.
, and
Spliethoff
,
H.
,
2016
, “
Reaction Kinetics of Pressurized Entrained Flow Coal Gasification: Computational Fluid Dynamics Simulation of a 5 MW Siemens Test Gasifier
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042204
.
28.
Chejne
,
F.
, and
Hernandez
,
J. P.
,
2002
, “
Modelling and Simulation of Coal Gasification Process in Fluidised Bed
,”
Fuel
,
81
(
13
), pp.
1687
1702
.
29.
Yu
,
L.
,
Lu
,
J.
,
Zhang
,
X. P.
, and
Zhang
,
S. J.
,
2007
, “
Numerical Simulation of the Bubbling Fluidized Bed Coal Gasification by the Kinetic Theory of Granular Flow (KTGF)
,”
Fuel
,
86
(
5
), pp.
722
734
.
30.
Mendes
,
A.
,
Dollet
,
A.
,
Ablitzer
,
C.
,
Perrais
,
C.
, and
Flamant
,
G.
,
2008
, “
Numerical Simulation of Reactive Transfers in Spouted Beds at High Temperature: Application to Coal Gasification
,”
J. Anal. Appl. Pyrol.
,
82
(
1
), pp.
117
128
.
31.
Irfan
,
M. F.
,
Usman
,
M. R.
, and
Kusakabe
,
K.
,
2011
, “
Coal Gasification in CO2 Atmosphere and Its Kinetics Since 1948: A Brief Review
,”
Energy
,
36
(
1
), pp.
12
40
.
32.
Kajitani
,
S.
,
Suzuki
,
N.
,
Ashizawa
,
M.
, and
Hara
,
S.
,
2006
, “
CO2 Gasification Rate Analysis of Coal Char in Entrained Flow Coal Gasifier
,”
Fuel
,
85
(
2
), pp.
163
169
.
33.
Kreitzberg
,
T.
,
Haustein
,
H. D.
,
Gövert
,
B.
, and
Kneer
,
R.
,
2016
, “
Investigation of Gasification Reaction of Pulverized Char Under N2/CO2 Atmosphere in a Small-Scale Fluidized Bed Reactor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042207
.
You do not currently have access to this content.