In the present study, a new carbon capture device that can be carried on-board vehicles has been developed and tested. The developed device uses absorption and adsorption methods of postcombustion CO2 capture. Sodium hydroxide (NaOH) pellets and calcium hydroxide Ca(OH)2 have been used as solvents and sorbents in the device. The CO2 capture efficiency has been evaluated at a wide range of operating conditions. The results showed that the higher the concentration of the solvent, the higher the capture efficiency, i.e., w 100% capture efficiency, being obtained at full saturation of NaOH. In addition, the increase in the solution temperature increases the capture efficiency up to 50 °C. Design of the gas distributer in the device has also a notable effect on CO2 capture. It was found that solvent prepared with seawater can provide high capture efficiency over a wide range of operation, but in general, it has a lower capture efficiency than that prepared by tap water. Moreover, solvents prepared by NaOH have a superior CO2 capture efficiency over those prepared by Ca(OH)2. For the adsorption technique, a 50% NaOH and 50% Ca(OH) mixture by mass has provided the highest capture efficiency compared with each sorbent when used alone.

References

References
1.
Allwood
,
J.
, and
Cullen
,
J.
,
2011
,
Sustainable Materials With Both Eyes Open
,
UIT Cambridge
,
Cambridge, UK
.
2.
Walsh
,
P.
,
2000
, “
Vehicle Emission Trends
,”
European Conference of Ministers of Transport
, Prague, Czech Republic.
3.
EIA
,
2016
, “
Annual Energy Outlook 2016
,” U.S. Energy Information Administration, Washington, DC, accessed June 15, 2017, www.eia.gov
4.
Tola
,
V.
,
Cau
,
G.
,
Ferrara
,
F.
, and
Pettinau
,
A.
,
2016
, “
CO2 Emissions Reduction From Coal-Fired Power Generation: A Techno-Economic Comparison
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061602
.
5.
Li
,
S.
,
Jin
,
H.
,
Mumford
,
K. A.
,
Smith
,
K.
, and
Stevens
,
G.
,
2015
, “
IGCC Precombustion CO2 Capture Using K2CO3 Solvent and Utilizing the Intercooling Heat Recovered From CO2 Compressors for CO2 Regeneration
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042002
.
6.
Cohen
,
S. M.
,
Rochelle
,
G. T.
, and
Webber
,
M. E.
,
2010
, “
Turning CO2 Capture On and Off in Response to Electric Grid Demand: A Baseline Analysis of Emissions and Economics
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021003
.
7.
Hassan
,
B.
,
Ogidiama
,
O. V.
,
Khan
,
M. N.
, and
Shamim
,
T.
,
2016
, “
Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032002
.
8.
Hoeftberger
,
D.
, and
Karl
,
J.
,
2016
, “
The Indirectly Heated Carbonate Looping Process for CO2 Capture—A Concept With Heat Pipe Heat Exchanger
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042211
.
9.
Al-Ameri
,
W. A.
,
Abdulraheem
,
A.
, and
Mahmoud
,
M.
,
2015
, “
Long-Term Effects of CO2 Sequestration on Rock Mechanical Properties
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012201
.
10.
Bhown
,
A. S.
, and
Freeman
,
B. C.
,
2011
, “
Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies
,”
Environ. Sci. Technol.
,
45
(
20
), pp.
8624
8632
.
11.
Han
,
S.
,
Yoo
,
M.
,
Kim
,
D.
, and
Wee
,
J.
,
2011
, “
Carbon Dioxide Capture Using Calcium Hydroxide Aqueous Solution as the Absorbent
,”
Energy Fuels
,
25
(
8
), pp.
3825
3834
.
12.
Yoo
,
M.
,
Han
,
S.-J.
, and
Wee
,
J.-H.
,
2013
, “
Carbon Dioxide Capture Capacity of Sodium Hydroxide Aqueous Solution
,”
J. Environ. Manage.
,
114
, pp.
512
519
.
13.
Poherecki
,
R.
, and
Moniuk
,
W.
,
1988
, “
Kinetics of Reaction Between Carbon Dioxide and Hydroxyl Ions in Aqueous Electrolyte Solutions
,”
Chem. Eng. Sci.
,
43
(
7
), pp.
1677
1684
.
14.
Li
,
Z.-S.
,
Cai
,
N.-S.
,
Huang
,
Y.-Y.
, and
Han
,
H.-J.
,
2005
, “
Synthesis Experimental Studies and Analysis of a New Calcium-Based Carbon Dioxide Absorbent
,”
Energy Fuels
,
19
(
4
), pp.
1447
1452
.
15.
Sreenivasulu
,
B.
,
Gayatri
,
D. V.
,
Sreedhar
,
I.
, and
Raghavan
,
K. V.
,
2015
, “
A Journey Into the Process and Engineering Aspects of Carbon Capture Technologies
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
1324
1350
.
16.
Kothandaraman
,
A.
,
2006
, “
Carbon Dioxide Capture by Chemical Absorption: A Solvent Comparison Study
,”
Master thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://pdfs.semanticscholar.org/62a7/3306ee221b1c8e8b945becd1c45ee16c6339.pdf
17.
Huang
,
C.-M.
,
Hsu
,
H.-W.
,
Liu
,
W.-H.
,
Cheng
,
J.-Y.
,
Chen
,
W.-C.
,
Wen
,
T.-W.
, and
Chen
,
W.
,
2011
, “
Development of Post-Combustion CO2 Capture With CaO/CaCO3 Looping in a Bench Scale Plant
,”
Energy Procedia
,
4
, pp.
1268
1275
.
18.
Andersen
,
A.
,
Divekar
,
S.
,
Dasgupta
,
S.
,
Cavka
,
J. H.
,
Aarti
,
Nanoti
,
A.
, Spjelkavik, A., Goswami, A. N., Garg, M. O., and Blom, R.,
2013
, “
On the Development of Vacuum Swing Adsorption (VSA) Technology for Post-Combustion CO2 Capture
,”
Energy Procedia
,
37
, pp.
33
39
.
19.
Hedin
,
N.
,
Andersson
,
L.
,
Bergström
,
L.
, and
Yan
,
J.
,
2013
, “
Adsorbents for the Post-Combustion Capture of CO2 Using Rapid Temperature Swing or Vacuum Swing Adsorption
,”
Appl. Energy
,
104
, pp.
418
433
.
20.
Dang
,
W.
,
Friedrich
,
D.
, and
Brandani
,
S.
,
2013
, “
Characterisation of an Automated Dual Piston Pressure Swing Adsorption (DP-PSA) System
,”
Energy Procedia
,
37
, pp.
57
64
.
21.
Casas
,
N.
,
Schell
,
J.
,
Joss
,
L.
, and
Mazzotti
,
M.
,
2013
, “
A Parametric Study of a PSA Process for Pre-Combustion CO2 Capture
,”
Sep. Purif. Technol.
,
104
, pp.
183
192
.
22.
Su
,
F.
,
Lu
,
C.
,
Chung
,
A.-J.
, and
Liao
,
C.-H.
,
2014
, “
CO2 Capture With Amine-Loaded Carbon Nanotubes Via a Dual-Column Temperature/Vacuum Swing Adsorption
,”
Appl. Energy
,
113
, pp.
706
712
.
23.
Thiruvenkatachari
,
R.
,
An
,
S. S. H.
, and
Yu
,
X. X.
,
2009
, “
Post-Combustion CO2 Capture by Carbon Fiber Monolithic Adsorbents
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
438
455
.
24.
Yu
,
C. H.
,
Huang
,
C. H.
, and
Tan
,
C. S.
,
2012
, “
A Review of CO2 Capture by Absorption and Adsorption
,”
Aerosol Air Qual. Res.
,
12
(5), pp.
745
769
.
25.
Sjostrom
,
S.
,
Krutka
,
H.
,
Starns
,
T.
, and
Campbell
,
T.
,
2011
, “
Pilot Test Results of Post-Combustion CO2 Capture Using Solid Sorbents
,”
Energy Procedia
,
4
, pp.
1584
1592
.
26.
Blamey
,
J.
,
Anthony
,
E. J.
,
Wang
,
J.
, and
Fennell
,
P. S.
,
2010
, “
The Calcium Looping Cycle for Large-Scale CO2 Capture
,”
Prog. Energy Combust. Sci.
,
36
(
2
), pp.
260
279
.
27.
Ullah
,
R.
,
Atilhan
,
M.
,
Canlier
,
A.
,
Aparicio
,
S.
, and
Yavuz
,
C. T.
,
2015
, “
Insights of CO2 Adsorption Performance of Amine Impregnated Mesoporous Silica (SBA-15) at Wide Range Pressure and Temperature Conditions
,”
Int. J. Greenhouse Gas Control
,
43
, pp.
22
32
.
28.
Kim
,
J.
,
Lin
,
L.
,
Swisher
,
J. A.
,
Haranczyk
,
M.
, and
Smit
,
B.
,
2012
, “
Predicting Large CO2 Adsorption in Aluminosilicate Zeolites for Postcombustion Carbon Dioxide Capture
,”
J. Am. Chem. Soc.
,
134
(
46
), pp.
18940
18943
.
29.
Wu
,
D.
,
Xu
,
Q.
,
Liu
,
D.
, and
Zhong
,
C.
,
2010
, “
Exceptional CO2 Capture Capability and Molecular-Level Segregation in a Li-Modified Metal−Organic Framework
,”
J. Phys. Chem. C
,
114
(
39
), pp.
16611
16617
.
30.
Patel
,
H.
,
Karadas
,
F.
,
Byun
,
J.
,
Park
,
J.
,
Deniz
,
E.
,
Canlier
,
A.
,
Jung
,
A.
,
Atilhan
,
M.
, and
Yavuz
,
C. T.
,
2013
, “
Highly Stable Nanoporous Sulfur-Bridged Covalent Organic Polymers for Carbon Dioxide Removal
,”
Adv. Funct. Mater.
,
23
(
18
), pp.
2270
2276
.
31.
Abanades
,
J. C.
,
Grasa
,
G.
,
Alonso
,
M.
,
Rodriguez
,
N.
,
Anthony
,
E. J.
, and
Romeo
,
L. M.
,
2007
, “
Cost Structure of a Post-Combustion CO2 Capture System Using CaO
,”
Environ. Sci. Technol.
,
41
(
15
), pp.
5523
5527
.
32.
Alvarez
,
D.
, and
Abanades
,
J. C.
,
2005
, “
Determination of the Critical Product Layer Thickness in the Reaction of CaO With CO2
,”
Ind. Eng. Chem. Res.
,
44
(
15
), pp.
5608
5615
.
33.
Barker
,
R.
,
1973
, “
Reversibility of the Reaction CaCO3 = CaO + CO2
,”
J. Appl. Chem. Biotechnol.
,
23
(10), pp.
733
742
.
34.
Grasa
,
G. S.
,
Alonso
,
M.
, and
Abanades
,
J. C.
,
2008
, “
Sulfation of CaO Particles in a Carbonation/Calcination Loop to Capture CO2
,”
Ind. Eng. Chem. Res.
,
47
(
5
), pp.
1630
1635
.
35.
Salvador
,
C.
,
Lu
,
D.
,
Anthony
,
E. J.
, and
Abanades
,
J. C.
,
2003
, “
Enhancement of CaO for CO2 Capture in an FBC Environment
,”
Chem. Eng. J.
,
96
(
1–3
), pp.
187
195
.
36.
Kianpour
,
M.
,
Sobati
,
M. A.
, and
Shahhosseini
,
S.
,
2012
, “
Experimental and Modeling of CO2 Capture by Dry Sodium
,”
Chem. Eng. Res. Des.
,
90
(
11
), pp.
2041
2050
.
37.
Shimizu
,
T.
,
Hirama
,
T.
,
Hosoda
,
H.
,
Kitano
,
K.
,
Inagaki
,
M.
, and
Tejima
,
K.
,
1999
, “
A Twin Fluid-Bed Reactor for Removal of CO2 From Combustion Processes
,”
Chem. Eng. Res. Des.
,
77
(
1
), pp.
62
68
.
38.
Naser
,
I.
,
Ali
,
S.
, and
Ahmed
,
S. F.
,
2013
, “
Development of a Carbon Capture Device for Mobile Emissions Sources
,”
Second International Conference on Mechanical, Automotive and Aerospace Engineering
(
ICMAAE
), Kuala Lumpur, Malaysia, July 2–4, Paper No. 30011.http://qufaculty.qu.edu.qa/sahmed/wp-content/uploads/sites/600/2016/05/Samer-Ahmed-2nd-ICMAAE-conference.pdf
39.
Chen
,
P. C.
,
Huang
,
C. F.
,
Chen
,
H.
,
Yang
,
M.
, and
Tsao
,
C.
,
2014
, “
Capture of CO2 From Coal-Fired Power Plant With NaOH Solution in a Continuous Pilot-Scale Bubble-Column Scrubber
,”
Energy Procedia
,
61
, pp.
1660
1664
.
40.
Ye
,
W.
,
Huang
,
J.
,
Lin
,
J.
,
Zhang
,
X.
,
Shen
,
J.
,
Luis
,
P.
, and
Bruggen
,
B.
,
2015
, “
Environmental Evaluation of Bipolar Membrane Electrodialysis for NaOH Production From Wastewater: Conditioning NaOH as a CO2 Absorbent
,”
Sep. Purif. Technol.
,
144
, pp.
206
214
.
41.
Liu
,
L.
,
Zhao
,
C.
,
Xu
,
J.
, and
Li
,
Y.
,
2015
, “
Integrated CO2 Capture and Photocatalytic Conversion by a Hybrid Adsorbent/Photocatalyst Material
,”
Appl. Catal., B
,
179
, pp.
489
499
.
42.
Baciocchi
,
R.
,
Storti
,
G.
, and
Mazzotti
,
M.
,
2006
, “
Process Design and Energy Requirements for the Capture of Carbon Dioxide From Air
,”
Chem. Eng. Process.: Process Intensif.
,
45
(
12
), pp.
1047
1058
.
43.
Zeman
,
F.
,
2007
, “
Energy and Material Balance of CO2 Capture From Ambient Air
,”
Environ. Sci. Technol.
,
41
(
21
), pp.
7558
7563
.
44.
Stolaroff
,
J.
,
Keith
,
D.
, and
Lowry
,
G. V.
,
2008
, “
Carbon Dioxide Capture From Atmospheric Air Using Sodium Hydroxide Spray
,”
Environ. Sci. Technol.
,
42
(
8
), pp.
2728
2735
.
45.
Blunt
,
M.
,
Fayers
,
F. J.
, and
Orr
,
F. M.
,
1993
, “
Carbon Dioxide in Enhanced Oil Recovery
,”
Energy Convers. Manage.
,
34
(
9
), pp.
1197
1204
.
46.
Zhao
,
W. Z.
,
Sun
,
T.
,
Grattan
,
K. T. V.
,
Shen
,
Y. H.
,
Wei
,
C. L.
, and
Al-Shamma'a
,
A. I.
,
2006
, “
Temperature Monitoring of Vehicle Engine Exhaust Gases Under Vibration Condition Using Optical Fibre Temperature Sensor Systems
,”
J. Phys.: Conf. Ser.
,
45
, pp.
215
222
.
You do not currently have access to this content.