Evaporation of droplets of liquid mixture is a subject of interest in combustion studies, e.g., combustion of bioethanol blends. In this paper, experimental investigation, using rainbow refractometry, on the variations of droplet diameter and composition during the evaporation of water–ethanol droplet in quiescent atmosphere is studied. The droplet is suspended on the tip of 125 μm-diameter fiberglass rod. The initial diameter is around 1000–1100 μm, and the initial composition is varied from 0% to 100% of ethanol by volume. The scattered rainbow signal from the evaporating droplet is fitted to the Airy theory to extract information on the diameter and refractive index of the liquid droplet against evolution time. To determine the accuracy of droplet diameter measurements using this technique, the diameter is also measured from the shadow image of droplet simultaneously. At 0–60% of ethanol by volume, the diameter and volume fraction accuracies are within ±30 μm and 10%, respectively, even though the temperature and composition gradients inside a droplet are neglected. The results show that the water–ethanol mixture evaporates faster at the beginning due to the higher amount of the volatile component, i.e., ethanol. The D2–t curve appears as a series of two straight lines of different slopes: a steep one initially and a moderate one at later stage. The slope at the initial or the transition stage increases with the ethanol composition, while the slope at later stage (steady stage) is equivalent to that of pure water. Likewise, the refractive index decreases rapidly at the beginning and becomes steady reaching a final value of 1.333, which is close to the refractive index of pure water.

References

References
1.
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops—Part I
,”
Chem. Eng. Prog.
,
48
(
3
), pp.
141
146
.
2.
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops—Part II
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
3.
Lefebvre
,
A. H.
,
1989
,
Atomization and Spray
,
Hemisphere Publishing
,
Washington, DC
.
4.
Samuel
,
P. P.
, and
Karim
,
G. A.
,
1994
, “
A Numerical Study of the Unsteady Effects of Droplet Evaporation and Ignition in Homogeneous Environments of Fuel and Air
,”
ASME J. Energy Resour. Technol.
,
116
(
3
), pp.
194
200
.
5.
Kuchma
,
A. E.
,
Martyukova
,
D. S.
,
Lezova
,
A. A.
, and
Shchekin
,
A. K.
,
2013
, “
Size, Temperature and Composition of a Spherical Droplet as a Function of Time at the Transient Stage of Nonisothermal Binary Condensation or Evaporation
,”
Colloids Surf., A
,
432
, pp.
147
156
.
6.
Han
,
K.
,
Zhao
,
C.
,
Fu
,
G.
,
Zhang
,
F.
,
Pang
,
S.
, and
Li
,
Y.
,
2015
, “
Evaporation Characteristics of Dual Component Droplet of Benzyl Azides-Hexadecane Mixtures at Elevated Temperatures
,”
Fuel
,
157
, pp.
270
278
.
7.
Liu
,
L.
,
Liu
,
Y.
,
Mi
,
M.
,
Wang
,
Z.
, and
Jiang
,
L.
,
2016
, “
Evaporation of a Bicomponent Droplet During Depressurization
,”
Int. J. Heat Mass Transfer
,
100
, pp.
615
626
.
8.
Gavhane
,
S.
,
Pati
,
S.
, and
Som
,
S. K.
,
2016
, “
Evaporation of Multicomponent Liquid Fuel Droplets: Influences of Component Composition in Droplet and Vapor Concentration in Free Stream Ambience
,”
Int. J. Therm. Sci.
,
105
, pp.
83
95
.
9.
Jarvas
,
G.
,
Kontos
,
J.
,
Hancsok
,
J.
, and
Dallos
,
A.
,
2015
, “
Modeling Ethanol–Blended Gasoline Droplet Evaporation Using COSMO-RS Theory and Computation Fluid Dynamics
,”
Int. J. Heat Mass Transfer
,
84
, pp.
1019
1029
.
10.
Qubeissi
,
M. A.
,
Sazhin
,
S. S.
,
Turner
,
J.
,
Begg
,
S.
,
Crua
,
C.
, and
Heikal
,
M. R.
,
2015
, “
Modelling of Gasoline Fuel Droplets Heating and Evaporation
,”
Fuel
,
159
, pp.
373
384
.
11.
Sazhin
,
S. S.
,
2006
, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
162
214
.
12.
Hallett
,
W. L. H.
, and
Legault
,
N. V.
,
2010
, “
Modelling Biodiesel Droplet Evaporation Using Continuous Thermodynamics
,”
Fuel
,
90
(
3
), pp.
1221
1228
.
13.
Dash
,
S. K.
, and
Som
,
S. K.
,
1991
, “
Ignition and Combustion of Liquid Fuel Droplet in a Convective Medium
,”
ASME J. Energy Resour. Technol.
,
113
(
3
), pp.
165
170
.
14.
Ha
,
M. Y.
,
1997
, “
A Numerical Study of Droplet Evaporation and Combustion in the Presence of an Oscillating Flow
,”
ASME J. Energy Resour. Technol.
,
119
(
2
), pp.
109
119
.
15.
Morin
,
C.
,
Chauveau
,
C.
, and
Gokalp
,
I.
,
2000
, “
Droplet Vaporisation Characteristics of Vegetable Oil Derived Biofuels at High Temperatures
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
41
50
.
16.
Hallett
,
W. L. H.
, and
Beauchamp-Kiss
,
S.
,
2010
, “
Evaporation of Single Droplets of Ethanol–Fuel Oil Mixtures
,”
Fuel
,
89
(
9
), pp.
2496
2504
.
17.
Chauveau
,
C.
,
Birouk
,
M.
, and
Gokalp
,
I.
,
2011
, “
An Analysis of the d2-Law Departure During Droplet Evaporation in Microgravity
,”
Int. J. Multiphase Flow
,
37
(
3
), pp.
252
259
.
18.
Seers
,
P.
,
Thomas
,
W.
, and
Bruyere-Bergeron
,
S.
,
2011
, “
Determination of Fuel Droplet Evaporation Based on Multiple Thermocouple Sizes
,”
AIAA
Paper No. 2011-789.
19.
Mandal
,
D. K.
, and
Bakshi
,
S.
,
2012
, “
Internal Circulation in a Single Droplet Evaporating in a Closed Chamber
,”
Int. J. Multiphase Flow
,
42
, pp.
42
51
.
20.
Maqua
,
C.
,
Castanet
,
G.
, and
Lemoine
,
F.
,
2008
, “
Bicomponent Droplets Evaporation: Temperature Measurements and Modelling
,”
Fuel
,
87
(
13–14
), pp.
2932
2942
.
21.
Prakash
,
P.
,
Raghavan
,
V.
, and
Mehta
,
P. S.
,
2013
, “
Analysis of Multimode Burning Characteristics of Isolated Droplets of Biodiesel–Diesel Blends
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
024501
.
22.
Saengkaew
,
S.
,
Charinpanikul
,
T.
,
Laurent
,
C.
,
Biscos
,
Y.
,
Lavergne
,
G.
,
Gouesbet
,
G.
, and
Grehan
,
G.
,
2010
, “
Processing of Individual Rainbow Signals
,”
Exp. Fluids
,
48
(
1
), pp.
111
119
.
23.
Saengkaew
,
S.
,
Godard
,
G.
,
Blaisot
,
J. B.
, and
Grehan
,
G.
,
2008
, “
Experiment Analysis of Global Rainbow Technique: Sensitivity of Temperature and Size Distribution Measurements to Non-Spherical Droplets
,”
Exp. Fluids
,
47
, p.
839
.
24.
Yu
,
H.
,
Xu
,
F.
, and
Tropea
,
C.
,
2013
, “
Spheroidal Droplet Measurements Based on Generalized Rainbow Patterns
,”
J. Quant. Spectrosc. Radiat. Transfer
,
126
, pp.
105
112
.
25.
Xiang'e
,
H.
,
Huifen
,
J.
,
Kuanfang
,
R.
, and
Grehan
,
G.
,
2007
, “
On Rainbows of Inhomogeneous Spherical Droplets
,”
Opt. Commun.
,
269
(
2
), pp.
291
298
.
26.
Rosebrock
,
C. D.
,
Shirinzadeh
,
S.
,
Soeken
,
M.
,
Riefler
,
N.
,
Wriedt
,
T.
,
Drechsler
,
R.
, and
Mädler
,
L.
,
2016
, “
Time-Resolved Detection of Diffusion Limited Temperature Gradients Inside Single Isolated Burning Droplets Using Rainbow Refractometry
,”
Combust. Flame
,
168
, pp.
255
269
.
You do not currently have access to this content.