In this study, we present the results of a two-dimensional fluid-dynamic simulation of novel rotor geometry with spline function which is derivative of the traditional S-shape Savonius blade. A computational fluid dynamic (CFD) analysis is conducted using the Spalart–Allmaras turbulent model, validated using experimental data released by Sandia National Laboratory. Results are presented in terms of dimensionless torque and power coefficients, assuming a wind speed of 7 m/s and height and rotor diameter of 1 m. Furthermore, analysis of the forces acting on the rotor is conducted by evaluating frontal and side forces on each blade, and the resultant force acting on the central shaft. A qualitative representation of the vorticity around the traditional and spline rotor is shown to prove that the novel blade allows less turbulent flow through the rotor.

References

References
1.
Manwell
,
J. F.
,
McGowan
,
H. G.
, and
Rogers
,
A. L.
,
2009
,
Wind Energy Explained: Theory, Design and Application
,
2nd ed.
,
Wiley
, Chichester, UK.
2.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
3.
GWEC
,
2014
, “The Risks of Zero-Subsidy Offshore Wind,” Global Wind Energy Council, Brussels, Belgium, accessed Apr. 15, 2016, www.gwec.net
4.
Anderson
,
M.
, and
Beyene
,
A.
,
2015
, “
Integrated Resource Mapping of Wave and Wind Energy
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011203
.
5.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
6.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
7.
Eriksson
,
S.
,
Bernhoff
,
H.
, and
Leijon
,
M.
,
2008
, “
Evaluation of Different Turbine Concepts for Wind Power
,”
Renewable Sustainable Energy Rev.
,
12
(
5
), pp.
1419
1434
.
8.
Riegler
,
H.
,
2003
, “
HAWT Versus VAWT
,”
Refocus
,
4
(
4
), pp.
44
46
.
9.
Ricci
,
R.
,
Romagnoli
,
R.
,
Montelpare
,
S.
, and
Vitali
,
D.
,
2016
, “
Experimental Study on a Savonius Wind Rotor for Street Lighting Systems
,”
Appl. Energy
,
161
, pp.
143
152
.
10.
Krishnan
,
A.
, and
Paraschivoiu
,
M.
,
2016
, “
3D Analysis of Building Mounted VAWT With Diffuser Shaped Shroud
,”
Sustainable Cities Soc.
,
27
, pp.
160
166
.
11.
Skrzypinski
,
W.
,
Bak
,
C.
,
Beller
,
C.
,
Thorseth
,
A.
,
Bühler
,
F.
,
Poulsen
,
P. B.
, and
Andresen
,
C.
,
2013
, “
Wind Turbines on CO2 Neutral Luminaries in Urban Areas
,”
European Wind Energy Conference and Exhibition
(
EWEC
), Vienna, Austria, Feb. 4–7, Vol.
2
, pp.
898
904
.http://orbit.dtu.dk/files/52282582/Wind_Turbines_on_CO2_Neutral_presentation.pdf
12.
Plourde
,
B.
,
Abraham
,
J.
,
Mowry
,
G.
, and
Minkowycz
,
W.
,
2011
, “
Vertical-Axis Wind Turbines for Powering Cellular Communication Towers
,”
NSTI Nanotechnology Conference and Expo
(
NSTI-Nanotech
), Boston, MA, June 13–16, Vol.
3
, pp.
750
753
.http://www.nsti.org/procs/Nanotech2011v3/10/W8.864
13.
Fiedler
,
B. H.
, and
Bukovsky
,
M. S.
,
2011
, “
The Effect of a Giant Wind Farm on Precipitation in a Regional Climate Model
,”
Environ. Res. Lett.
,
6
(
4
), p.
045101
.
14.
Keith
,
D. W.
,
DeCarolis
,
J. F.
,
Denkenberger
,
D. C.
,
Lenschow
,
D. H.
,
Malyshev
,
S. L.
,
Pacala
,
S.
, and Rasch, P. J.,
2004
, “
The Influence of Large-Scale Wind Power on Global Climate
,”
PNAS
,
101
(
46
), pp.
16115
16120
.
15.
Wang
,
C.
, and
Prinn
,
R. G.
,
2010
, “
Potential Climatic Impacts and Reliability of Very Large-Scale Wind Farms
,”
Atmos. Chem. Phys.
,
10
(
4
), pp.
2053
2061
.
16.
Tummala
,
A.
,
Velamati
,
R. K.
,
Sinha
,
D. K.
,
Indraja
,
V.
, and
Krishna
,
V. H.
,
2016
, “
A Review on Small Scale Wind Turbines
,”
Renewable Sustainable Energy Rev.
,
56
, pp.
1351
1371
.
17.
Mayeed
,
M. S.
, and
Khalid
,
A.
,
2015
, “
Optimization of the Wind Turbine Designs for Areas With Low Wind Speeds
,”
ASME
Paper No. ES2015-49052.
18.
Mandelli
,
S.
,
Barbieri
,
J.
,
Mereu
,
R.
, and
Colombo
,
E.
,
2016
, “
Off-Grid Systems for Rural Electrification in Developing Countries: Definitions, Classification and a Comprehensive Literature Review
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1621
1646
.
19.
Battisti
,
L.
,
Zanne
,
L.
,
Dell'Anna
,
S.
,
Dossena
,
V.
,
Persico
,
G.
, and
Paradiso
,
B.
,
2011
, “
Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel
,”
ASME J. Energy Resour. Technol.
,
133
(
3
), p.
031201
.
20.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
21.
Persico
,
G.
,
Dossena
,
V.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2017
, “
Time-Resolved Experimental Characterization of the Wakes Shed by H-Shaped and Troposkien Vertical Axis Wind Turbines
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
031203
.
22.
Franco
,
J. A.
,
Jaureguil
,
J. C.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
23.
Savonius
,
S. J.
, 1925,
The Wing Rotor in Theory and Practice
,
Savonius
, Hämeenlinna,
Finland
.
24.
Dwiyantoro
,
B. A.
,
Yuwono
,
T.
, and
Suphandani
,
V.
,
2016
, “
Structural Design Optimization of Vertical Axis Wind Turbine Type Darrieus-Savonius
,”
ARPN J. Eng. Appl. Sci.
,
11
(
2
), pp.
1073
1077
.http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0116_3456.pdf
25.
Nagare
,
P.
,
Nair
,
A.
,
Shettigar
,
R.
,
Kale
,
P.
, and
Nambiar
,
P.
,
2015
, “
Vertical Axis Wind Turbine
,”
International Conference on Technologies for Sustainable Development
(
ICTSD
), Mumbai, India, Feb. 4–6, Paper No. 7095839.
26.
Thanigaivel
,
G.
,
2015
, “
Design and Analysis of Drag and Lift Vertical Axis Wind Turbine
,”
J. Chem. Pharm. Sci.
,
7
, pp.
106
108
.http://jchps.com/specialissues/Special%20issue%207/28%20MITNC-31%20Thanigaivel%20106-108.pdf
27.
Bhuyan
,
S.
, and
Biswas
,
A.
,
2014
, “
Investigations on Self-Starting and Performance Characteristics of Simple H and Hybrid H-Savonius Vertical Axis Wind Rotors
,”
Energy Convers. Manage.
,
87
, pp.
859
867
.
28.
Paraschivoiu
,
I.
,
2002
,
Wind Turbine Design With Emphasis on Darrieus Concept
,
Polytechnic International Press
, Montreal, QC,
Canada
, Chap. 2.2.
29.
Botrini
,
M.
,
1982
, “
Étude Aérodynamique d'une Éolienne Savonius
,” MS thesis, I.M.S.T., Marseille, France.
30.
Chauvin
,
A.
,
Botrini
,
M.
,
Brun
,
R.
, and
Beguier
,
C.
,
1983
, “
Évaluation du Coefficient de Puissance d'un Rotor Savonius
,”
C. R. Acad. Sci. Paris
,
296
(
2
), pp.
823
826
.
31.
Claveau
,
C.
,
Goujoin
,
R.
, and
Massart
,
S.
,
1975
, “
Étude d'une Éolienne
,” E.N.I.C.A. Report, Toulouse, France.
32.
Newman
,
B.
,
1974
, “
Measurements of Savonius Rotor With Variable Gap
,”
University of Sherbrooke Conference on Wind Energy
, University of Sherbrooke, Sherbrooke, QC, Canada, p. 116.
33.
Nguyen
,
D.
,
1977
, “
Colloque sur l’énergie au Sénégal
,” École Polytechnique de Thiès, Thiès, Sénégal.
34.
Albani
,
A.
, and
Ibrahim
,
M. Z.
,
2013
, “
Preliminary Development of Prototype of Savonius Wind Turbine for Application in Low Wind Speed in Kuala Terengganu
,”
Int. J. Sci. Technol. Res.
,
2
(
3
), pp.
102
108
.http://www.ijstr.org/final-print/mar2013/Preliminary-Development-Of-Prototype-Of-Savonius-Wind-Turbine-For-Application-In-Low-Wind-Speed-In-Kuala-Terengganu-Malaysia.pdf
35.
Jeon
,
K. S.
,
Jeong
,
J. I.
,
Pan
,
J.-K.
, and
Ryu
,
K.-W.
,
2015
, “
Effects of End Plates With Various Shapes and Sizes on Helical Savonius Wind Turbines
,”
Renewable Energy
,
79
(
1
), pp.
167
176
.
36.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.
37.
Mahmoud
,
N. H.
,
El-Haroun
,
A. A.
,
Wahba
,
E.
, and
Nasef
,
M. H.
,
2012
, “
An Experimental Study on Improvement of Savonius Rotor Performance
,”
Alexandria Eng. J.
,
51
(
1
), pp.
19
25
.
38.
Wenehenubun
,
F.
,
Saputra
,
A.
, and
Sutanto
,
H.
,
2015
, “
An Experimental Study on the Performance of Savonius Wind Turbines Related With the Number of Blades
,”
Energy Procedia
,
68
, pp.
297
304
.
39.
Mao
,
Z.
, and
Tian
,
W.
,
2015
, “
Effect of the Blade Arc Angle on the Performance of a Savonius Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
10
.
40.
Al-Faruk
,
A.
, and
Sharifian
,
A. S.
,
2015
, “
Effects of Flow Parameters on the Performance of Vertical Axis Swirling Type Savonius Wind Turbine
,”
Int. J. Automot. Mech. Eng.
,
12
(
1
), pp.
2929
2943
.
41.
Samiran
,
N. A.
,
Wahab
,
A. A.
,
Mohd
,
S.
, and
Rosly
,
N.
,
2014
, “
Simulation Study on the Performance of Vertical Axis Wind Turbine
,”
Appl. Mech. Mater.
,
465–466
, pp.
270
274
.
42.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Performance Tests on Helical Savonius Rotors
,”
Renewable Energy
,
34
(
3
), pp.
521
529
.
43.
Alvarez-Cedillo
,
J. A.
,
Olguín-Carbajal
,
M.
,
Herrera-Lozada
,
J. C.
,
Silva-Ortigoza
,
R.
, and
Sandoval-Gutiérrez
,
J.
,
2015
, “
Wind Flow Analysis of Twisted Savonius Micro-Turbine Array
,”
Comput. Sist.
,
19
(
3
), pp.
601
608
.
44.
Zhu
,
J.
,
Liu
,
P.
,
Qu
,
Q.
, and
Ruan
,
H.
,
2015
, “
Experimental Investigation on Aerodynamic Performance of Helical Savonius Rotor
,”
J. Basic Sci. Eng.
,
23
(
5
), pp.
1059
1067
.http://caod.oriprobe.com/articles/47101444/Experimental_Investigation_on_Aerodynamic_Performance_of_Helical_Savon.htm
45.
Lee
,
J.-H.
,
Lee
,
Y.-T.
, and
Lim
,
H.-C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
.
46.
Altan
,
B. D.
, and
Atilgan
,
M.
,
2008
, “
An Experimental and Numerical Study on the Improvement of the Performance of Savonius Wind Rotor
,”
Energy Convers. Manage.
,
49
(
12
), pp.
3425
3432
.
47.
Altan
,
B. D.
,
Atilgan
,
M.
, and
Özdamar
,
A.
,
2008
, “
An Experimental Study on Improvement of a Savonius Rotor Performance With Curtaining
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1673
1678
.
48.
Tartuferi
,
M.
,
D'Alessandro
,
V.
,
Montelpare
,
S.
, and
Ricci
,
R.
,
2015
, “
Enhancement of Savonius Wind Rotor Aerodynamic Performance: A Computational Study of New Blade Shapes and Curtain Systems
,”
Energy
,
79
(
C
), pp.
371
384
.
49.
Tesch
,
K.
,
Kludzinska
,
K.
, and
Doerffer
,
P.
,
2015
, “
Investigation of the Aerodynamics of an Innovative Vertical-Axis Wind Turbine
,”
Flow, Turbul. Combust.
,
95
(
4
), pp.
739
754
.
50.
Chen
,
C.-A.
,
Huang
,
T.-Y.
, and
Chen
,
C.-H.
,
2015
, “
Novel Plant Development of a Parallel Matrix System of Savonius Wind Rotors With Wind Deflector
,”
J. Renewable Sustainable Energy
,
7
(
1
), p.
013135
.
51.
Ersoy
,
H.
, and
Yalcindag
,
S.
,
2014
, “
An Experimental Study on the Improvement of Savonius Turbine Performance Using Flexible Sails
,”
In. J. Green Energy
,
11
(
8
), pp.
796
807
.
52.
Yang
,
B.
, and
Lawn
,
C.
,
2011
, “
Fluid Dynamic Performance of a Vertical Axis Turbine for Tidal Currents
,”
Renewable Energy
,
36
(
12
), pp.
3355
3366
.
53.
Kacprzak
,
K.
, and
Sobczak
,
K.
,
2015
, “
Computational Assessment of the Influence of the Overlap Ratio on the Power Characteristics of a Classical Savonius Wind Turbine
,”
Open Eng.
,
5
(1), pp.
314
322
.
54.
Chen
,
L.
,
Chen
,
J.
,
Xu
,
H.
,
Yang
,
H.
,
Ye
,
C.
, and
Liu
,
D.
,
2016
, “
Wind Tunnel Investigation on the Two- and Three-Blade Savonius Rotor With Central Shaft at Different Gap Ratio
,”
J. Renewable Sustainable Energy
,
8
(
1
), p.
013303
.
55.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
585
.
56.
Roy
,
S.
, and
Saha
,
U. K.
,
2015
, “
Wind Tunnel Experiments of a Newly Developed Two-Bladed Savonius-Style Wind Turbine
,”
Appl. Energy
,
137
, pp.
117
125
.
57.
Gad
,
H. E.
,
Abd El-Hamid
,
A. A.
,
El-Askary
,
W. A.
, and
Nasef
,
M. H.
,
2014
, “
A New Design of Savonius Wind Turbine: Numerical Study
,”
CFD Lett.
,
6
(
4
), pp.
144
158
.http://www.issres.net/journal/index.php/cfdl/article/viewFile/S2180-1363%2814%296144/243
58.
Tian
,
W.
,
Song
,
B.
,
Van Zwieten
,
J. H.
, and
Pyakurel
,
P.
,
2015
, “
Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine With Novel Blade Shapes
,”
Energies
,
8
(
8
), pp.
7915
7929
.
59.
Sheldahl
,
R. E.
,
Blackwell
,
B. F.
, and
Feltz
,
L. V.
,
1977
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,” Sandia National Laboratory, Albuquerque, NM, Report No.
SAND76-0131
.http://www.vawt.om2cm.sk/sites/default/files/2or3savonius.pdf
60.
Sheldahl
,
R. E.
,
Blackwell
,
B. F.
, and
Feltz
,
L. V.
,
1978
, “
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,”
J. Energy
,
2
(
3
), pp.
160
164
.
61.
Rogowski
,
K.
, and
Maroński
,
R.
,
2015
, “
CFD Computation of the Savonius Rotor
,”
J. Theor. Appl. Mech.
,
53
(
1
), pp.
37
45
.
62.
ANSYS
,
2009
, “
Ansys Fluent 12 Theory Guide
,” ANSYS Inc., Canonsburg, PA.
63.
ANSYS
,
2009
, “
Ansys Fluent 12 User's Guide
,” ANSYS Inc., Canonsburg, PA.
64.
Zadravec
,
M.
,
Basic
,
S.
, and
Hribersek
,
M.
,
2007
, “
The Influence of Rotating Domain Size in a Rotating Frame of Reference Approach for Simulation of Rotating Impeller in a Mixing Vessel
,”
J. Eng. Sci. Technol.
,
2
(2), pp.
126
138
.http://jestec.taylors.edu.my/Vol%202%20Issue%202%20August%2007/126-%20138%20Zadravec.pdf
65.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 1992-0439.
66.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
, and
Watanabe
,
K.
,
2017
, “
Power Augmentation of Shrouded Wind Turbines in a Multirotor System
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051202
.
67.
Rashidi
,
M.
,
Kadambi
,
J. R.
, and
Chinchore
,
A.
,
2014
, “
Computational Study of Savonius Wind Turbine
,”
ASME
Paper No. IMECE2014-39595.
68.
Jaohindy
,
P.
,
McTavish
,
S.
,
Garde
,
F.
, and
Bastide
,
A.
,
2013
, “
An Analysis of the Transient Forces Acting on Savonius Rotors With Different Aspect Ratios
,”
Renewable Energy
,
55
, pp.
286
295
.
69.
Irabu
,
K.
, and
Roy
,
J. N.
,
2011
, “
Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State
,”
Exp. Therm. Fluid Sci.
,
35
(
4
), pp.
653
659
.
70.
Sawada
,
T.
,
Nakamura
,
M.
, and
Kamada
,
S.
,
1986
, “
Blade Force Measurement and Flow Visualization of Savonius Rotors
,”
BULL JSME
,
29
(
253
), pp.
2095
2100
.
71.
El-Baz
,
A. R.
,
Youssef
,
K.
, and
Mohamed
,
M. H.
,
2016
, “
Innovative Improvement of a Drag Wind Turbine Performance
,”
Renewable Energy
,
86
, pp.
89
98
.
72.
Shaheen
,
M.
,
El-Sayed
,
M.
, and
Abdallah
,
S.
,
2015
, “
Numerical Study of Two-Bucket Savonius Wind Turbine Cluster
,”
J. Wind Eng. Ind. Aerodyn.
,
137
, pp.
78
89
.
73.
Jang
,
C.-M.
,
Kim
,
Y.-G.
,
Kang
,
S.-K.
, and
Lee
,
J.-H.
,
2016
, “
An Experiment for the Effects of the Distance and Rotational Direction of Two Neighboring Vertical Savonius Blades
,”
Int. J. Energy Res.
,
40
(
5
), pp.
632
638
.
74.
Baz
,
A. M.
,
Mahmoud
,
N. A.
,
Hamed
,
A. M.
, and
Youssef
,
K. M.
,
2015
, “
Optimization of Two and Three Rotor Savonius Wind Turbine
,”
ASME
Paper No. GT2015-43988.
You do not currently have access to this content.