Four airfoils typical to small-scale wind turbines were studied for noise generation: Eppler 387, NREL S823, NACA 0012, and NACA 4412. Wind tunnel sound pressure level (SPL) data were collected directly downstream of the airfoil for angles of attack from −10 deg to 25 deg and for Reynolds numbers from 50,000 to 200,000. Vertical and horizontal wake traverses define the extent of the noise generated. The data were analyzed by frequency and compared with a noise prediction from NREL AirFoil Noise (NAFNoise). The noise trends found can be applied to improve other airfoil selection when designing small-scale wind turbines.

References

References
1.
EIA,
2016
, “
International Energy Outlook 2016
,” U.S. Energy Information Administration, Washington, DC, Report No.
DOE/EIA-0484(2016)
.
2.
DOE,
2008
, “
20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply
,” U.S. Department of Energy, Washington, DC, Report No.
DOE/GO-102008-2567
.
3.
DOE,
2015
, “
Wind Vision: A New Era for Wind Power in the United States
,” U.S. Department of Energy, Washington, DC, Report No.
DOE/GO-102015-4557
.
4.
DOE,
2015
, “
2014 Wind Technologies Market Report
,” U.S. Department of Energy, Washington, DC, Report No.
DOE/GO-102015-4702
.
5.
Gsänger
,
S.
, and
Pitteloud
,
J.-D.
,
2015
, “
2015 Small Wind World Report Summary
,”
World Wind Energy Association
, Bonn, Germany, pp. 1–15.
6.
AWEA
, 2016, “
Small Wind
,” American Wind Energy Association, Washington, DC, accessed May 17, 2016, http://www.awea.org/Issues/Content.aspx?ItemNumber=4592&navItemNumber=723
7.
Renewable UK
,
2013
, “
Small and Medium Wind
,” RenewableUK, London,
UK Market Report
, pp. 1–24.
8.
Clausen
,
P. D.
, and
Wood
,
D. H.
,
1999
, “
Research and Development Issues for Small Wind Turbines
,”
Renewable Energy
,
16
(1–4), pp.
922
927
.
9.
Kishore
,
R. A.
,
Coudron
,
T.
, and
Priya
,
S.
,
2013
, “
Small-Scale Wind Energy Portable Turbine (SWEPT)
,”
J. Wind Eng. Ind. Aerodyn.
,
116
, pp.
21
31
.
10.
Orell
,
A.
, and
Foster
,
N.
,
2015
, “
2014 Distributed Wind Market Report
,” U.S. Department of Energy, Washington, DC, Report No.
DE AC05 76RL01830
.
11.
Elliot
,
D. L.
,
Holladay
,
C. G.
,
Barchet
,
W. R.
,
Foote
,
H. P.
, and
Sandusky
,
W. F.
,
1986
, “
Wind Energy Resource Atlas of the United States
,” U.S. Department of Energy, Washington, DC, Report No.
DE86004442_DOE/CH 10093-4
.
12.
Womeldorf
,
C. A.
,
2012
, “
Design of an Extra-Tall Mast Above Blade-Tip Heights for Wind Resource Assessments Across Complex Terrain Regions
,”
ASME J. Sol. Energy Eng.
,
134
(1) p. 015001.
13.
Burdett
,
T.
, and
Van Treuren
,
K. W.
,
2014
, “
Small Scale Wind Turbines Optimized for Class 2 Wind: A Siting Survey and Annual Energy Production Analysis
,”
ASME
Paper No. GT2014-26243.
14.
Lanzafame
,
R.
, and
Messina
,
M.
,
2009
, “
Optimal Wind Turbine Design to Maximize Energy Production
,”
J. Power Energy
,
223
(
2
), pp.
93
101
.
15.
Dayan
,
E.
,
2006
, “
Wind Energy in Buildings: Power Generation From Wind in the Urban Environment—Where It Is Needed Most
,”
Refocus
,
7
(
2
), pp.
33
38
.
16.
Dodman
,
D.
,
2009
, “
Blaming Cities for Climate Change? An Analysis of Urban Greenhouse Gas Emissions Inventories
,”
Environ. Urbanization
,
21
(
1
), pp.
185
201
.
17.
Millward-Hopkins
,
J. T.
,
Tomlin
,
A. S.
,
Ma
,
L.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2013
, “
Assessing the Potential of Urban Wind Energy in a Major UK City Using an Analytical Model
,”
Renewable Energy
,
60
, pp.
701
710
.
18.
Walker
,
S. L.
,
2011
, “
Building Mounted Wind Turbines and Their Suitability for the Urban Scale—A Review of Methods of Estimating Urban Wind Resource
,”
Energy Build.
,
43
(
8
), pp.
1852
1862
.
19.
Abohela
,
I.
,
Hamza
,
N.
, and
Dudek
,
S.
,
2013
, “
Effect of Roof Shape, Wind Direction, Building Height and Urban Configuration on the Energy Yield and Positioning of Roof Mounted Wind Turbines
,”
Renewable Energy
,
50
, pp.
1106
1108
.
20.
Drew
,
D. R.
,
Barlow
,
J. F.
, and
Cockerill
,
T. T.
,
2013
, “
Estimating the Potential Yield of Small Wind Turbines in Urban Areas: A Case Study for Greater London, UK
,”
J. Wind Eng. Ind. Aerodyn.
,
115
, pp.
104
111
.
21.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Carnevale
,
E. A.
,
Ferrari
,
L.
, and
Magnani
,
S.
,
2012
, “
Feasibility Analysis of a Darrieus Vertical-Axis Wind Turbine Installation in the Rooftop of a Building
,”
Appl. Energy
,
97
, pp.
921
929
.
22.
Lu
,
L.
, and
Ip
,
K. Y.
,
2009
, “
Investigation on the Feasibility and Enhancement Methods of Wind Power Utilization in High-Rise Buildings in Hong Kong
,”
Renewable Sustainable Energy Rev.
,
13
(
2
), pp.
450
461
.
23.
Sunderland
,
K.
,
Woolmington
,
T.
,
Blackledge
,
J.
, and
Conlon
,
M.
,
2013
, “
Small Wind Turbines in Turbulent (Urban) Environments: A Consideration of Normal and Weibull Distributions for Power Prediction
,”
J. Wind Eng. Ind. Aerodyn.
,
121
, pp.
70
81
.
24.
Duggan
,
C. D.
, and
Jak
,
M. J. G.
,
2004
, “
Wind Power for Urban Applications
,”
ASME
Paper No. POWER2004-52041.
25.
Booker
,
J. D.
,
Mellor
,
P. H.
,
Wrobel
,
R.
, and
Drury
,
D.
,
2010
, “
A Compact, High Efficiency Contra-Rotating Generator Suitable for Wind Turbines in the Urban Environment
,”
Renewable Energy
,
35
(
9
), pp.
2027
2033
.
26.
Dursun
,
A.
, and
Saglam
,
S.
,
2012
, “
A Technical Review of Building-Mounted Wind Power Systems and a Sample Simulation Model
,”
Renewable Sustainable Energy Rev.
,
16
(1), pp.
1040
1049
.
27.
Simic
,
Z.
,
Havelka
,
J. G.
, and
Vrhovcak
,
M. B.
,
2013
, “
Small Wind Turbines—A Unique Segment of the Wind Power Market
,”
Renewable Energy
,
50
, pp.
1027
1036
.
28.
Mithraratne
,
N.
,
2009
, “
Roof-Top Wind Turbines for Microgeneration in Urban Houses in New Zealand
,”
Energy Build.
,
41
(
10
), pp.
1013
1018
.
29.
Van Treuren
,
K. W.
,
2015
, “
Small-Scale Wind Turbine Testing in Wind Tunnels Under Low Reynolds Number Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051208
.
30.
Selig
,
M.
, 2016, “
UIUC Airfoil Coordinates Data Base
,” UIUC Applied Aerodynamics Group, Urbana, IL, accessed May 18, 2016, http://m-selig.ae.illinois.edu/ads/coord_database.html
31.
Jonkman
,
B.
,
2014
, “
NWTC Information Portal—NREL Wind Airfoil Database
,” National Renewable Energy Laboratory, Golden, CO, accessed May 18, 2016, https://wind.nrel.gov/airfoils/AirfoilData.html
32.
Drela
,
M.
, 2000, “
XFOIL: Subsonic Airfoil Development System
,” Massachusetts Institute of Technology, Cambridge, MA, accessed May 18, 2016, http://web.mit.edu/drela/Public/web/xfoil/
33.
Eppler
,
R.
, 2000, “
The Eppler Airfoil Design and Analysis Code (PROFIL)
,” Airfoil Inc., Port Matilda, PA, accessed May 18, 2016, http://www.airfoils.com/eppler.htm
34.
Selig
,
M.
, 2016, “
PROFOIL-WWW Version 1.1
,” UIUC Applied Aerodynamics Group, Urbana, IL, accessed May 18, 2016, http://www.profoil.org/index.html
35.
Burdett
,
T. A.
,
2012
, “
Aerodynamic Design Considerations for Small-Scale, Fixed-Pitch, Horizontal-Axis Wind Turbines Operating in Class 2 Winds
,”
M.S. thesis
, Baylor University, Waco, TX.
36.
Burdett
,
T. A.
,
Gregg
,
J.
, and
Van Treuren
,
K. W.
,
2011
, “
An Examination of the Effect of Reynolds Number on Airfoil Performance
,”
ASME
Paper No. ES2011-54720.
37.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2016
, “
Study of Noise Generation Using the Eppler 387, NACA 0012, NACA 4412 and NREL S823
,”
ASEE Gulf Southwest Graduate Student Competition
, Fort Worth, TX, Mar. 6–8, pp. 1–13.
38.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2016
, “
Study of Noise Generation Using the NACA 4412 and NREL S823 Airfoils
,”
AIAA Region IV Graduate Student Competition
, Arlington, TX, Apr. 1–2, pp. 1–8.
39.
Brooks
,
T.
,
Pope
,
D.
, and
Marcolini
,
M.
,
1989
, “
Airfoil Self-Noise and Prediction
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA-RP-1218
.
40.
Wagner
,
S.
,
BareiB
,
R.
, and
Guidati
,
G.
,
1996
,
Wind Turbine Noise
,
Springer
,
Berlin
, Chap. 4.
41.
NWTC Information Portal (NAFNoise)
,
2014
, “
NAFNoise
,” National Renewable Energy Laboratory, Golden, CO, accessed May 10, 2015, https://nwtc.nrel.gov/NAFNoise
42.
Van Treuren
,
K. W.
,
2016
, “
Current Status and Future Challenges for Small Horizontal Axis Wind Turbines
,”
ASME
Paper No. GT2016-57701.
43.
Brüel & Kjær,
2000
, “
Environmental Noise
,” Brüel & Kjaer Sound & Vibration Measurement A/S, Nærum, Denmark, Report No.
BR1626
.
44.
Sommers
,
D. M.
, and
Laugher
,
M. D.
,
2003
, “
Theoretical Aerodynamic Analysis of Six Airfoils for Use on Small Wind Turbines
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/SR-500-33295
.
45.
Timmer
,
W. A.
,
2008
, “
Two-Dimensional Low-Reynolds Number Wind Tunnel Results for Airfoil NACA 0018
,”
Wind Eng.
,
32
(
6
), pp.
525
537
.
46.
Amiet
,
R. K.
,
1975
, “
Acoustic Radiation From an Airfoil in a Turbulent Stream
,”
J. Sound Vib.
,
41
(
4
), pp.
407
420
.
47.
Lowson
,
M. V.
,
1993
, “
Assessment and Prediction of Wind Turbine Noise
,” Flow Solutions, Bristol, UK, Report No.
ETSU W/13/00284/REP
.
48.
Driscoll
,
D. P.
, 2016, “
Noise, OSHA Technical Manual
,” U.S. Department of Labor, Washington, DC, accessed May 16, 2016, https://www.osha.gov/dts/osta/otm/new_noise/
You do not currently have access to this content.