Turbulent air flow over an NACA 4412 airfoil is investigated computationally. To overcome the near-wall inaccuracies of higher order turbulence models such as large Eddy simulation (LES) and detached Eddy simulation (DES), it is proposed to couple DES with algebraic stress model (ASM). Angles of attack (AoA) of 0 and 14 deg are studied for an airfoil subjected to flow with Re = 1.6 × 106. Distribution of the pressure coefficient at airfoil surface and the chordwise velocity component at four locations near the trailing edge are determined. Results of the baseline DES and hybrid DES–ASM models are compared against published data. It is demonstrated that the proposed hybrid model can slightly improve the flow predictions made by the DES model. Findings of this research can be used for the improvement of the near-wall flow predictions for wind turbine applications.

References

References
1.
Burton
,
T.
,
Jenkins
,
N.
,
Sharpe
,
D.
, and
Bossanyi
,
E.
,
2011
,
Wind Energy Handbook
,
Wiley
,
Chichester, UK
.
2.
Franke
,
M.
,
Wallin
,
S.
, and
Thiele
,
F.
,
2005
, “
Assessment of Algebraic Reynolds-Stress Turbulence Models in Aerodynamic Computations
,”
Aerosp. Sci. Technol.
,
9
(
7
), pp.
573
581
.
3.
Wallin
,
S.
, and
Johansson
,
A. V.
,
2000
, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.
4.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
5.
Rung
,
T.
,
Lubcke
,
H.
,
Franke
,
M.
,
Xue
,
L.
,
Thiele
,
F.
, and
Fu
,
S.
,
1999
, “
Assessment of Explicit Algebraic Stress Models in Transonic Flow
,”
Engineering Turbulence Modeling and Experiments
, Vol.
4
,
W.
Rodi
and
D.
Laurence
, eds.,
Elsevier
,
Amsterdam, The Netherlands
, pp.
659
668
.
6.
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1993
, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows
,”
J. Fluid Mech.
,
254
, pp.
59
75
.
7.
Ferrand
,
M.
, and
Violeau
,
D.
,
2012
, “
A Family of Explicit Algebraic Models for Reynolds Stresses and Passive Scalar Fluxes
,”
J. Hydraul. Res.
,
50
(
5
), pp.
494
505
.
8.
Jaffrézic
,
B.
, and
Breuer
,
M.
,
2008
, “
Application of an Explicit Algebraic Reynolds Stress Model Within a Hybrid LES–RANS Method
,”
Flow, Turbul. Combust.
,
81
(
3
), pp.
415
448
.
9.
Amano, R. S., and Beyhaghi, S.,
2015
, “
Use of Algebraic-Stress Model for Determination of Near-Wall Reynolds-Stresses in Turbulent Flow Over a Flat Plate
,”
AIAA
Paper No. 2015-1890.
10.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2015
, “
Analysis of Turbulent Flow Around Horizontal Axis Wind Turbines Using Algebraic Stress Model
,”
ASME
Paper No. IMECE2015-50686.
11.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—Part I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
12.
Deardorff
,
J.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(
2
), pp.
453
480
.
13.
Menter
,
F. R.
, and
Kuntz
,
M.
,
2004
, “
Adaptation of Eddy-Viscosity Turbulence Models to Unsteady Separated Flows Behind Vehicles
,”
The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains
,
R.
McCallen
, F. Browand, and J. Ross, eds.,
Springer-Verlag
,
Berlin
, pp.
339
352
.
14.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modeled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
15.
CD-Adapco, 2014, “
STAR-CCM+® Version 9.06 User Guide
,” CD-Adapco, Melville, NY, accessed June 1, 2016, http://www.cd-adapco.com/
16.
Travin
,
A.
,
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Spalart
,
P. R.
,
2002
, “
Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows
,”
Advances in LES of Complex Flows
,
R.
Friedrich
and
W.
Rodi
, eds.,
Kluwer Academic Press
, Dordrecht, The Netherlands, pp.
239
254
.
17.
Rodi
,
W.
,
1972
, “
The Prediction of Free Turbulent Boundary Layers by Use of a Two-Equation Model for Turbulence
,” Ph.D. thesis, University of London, London.
18.
Pope
,
S. B.
,
1975
, “
A More General Effective Viscosity Hypothesis
,”
J. Fluid Mech.
,
72
(
2
), pp.
331
340
.
19.
Gatski
,
T. B.
, and
Rumsey
,
C. L.
,
2002
, “
Linear and Nonlinear Eddy Viscosity Models
,”
Closure Strategies for Turbulent and Transitional Flows
,
B. E.
Launder
and
N.
Sandham
, eds.,
Cambridge University Press
,
Cambridge, UK
, pp.
9
46
.
20.
Hanjalic
,
K.
, and
Launder
,
B. E.
,
2011
,
Modeling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure
,
Cambridge University Press
,
Cambridge, UK
.
21.
Antonello
,
M.
, and
Masi
,
M.
,
2007
, “
A Simplified Explicit Algebraic Model for the Reynolds Stresses
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1092
1097
.
22.
Argyropoulosa
,
C. D.
, and
Markatos
,
N. C.
,
2015
, “
Recent Advances on the Numerical Modeling of Turbulent Flows
,”
Appl. Math. Modell.
,
39
(
2
), pp.
693
732
.
23.
Bose
,
S. T.
,
2012
, “
Explicitly Filtered Large-Eddy Simulation: With Application to Grid Adaptation and Wall Modeling
,”
Ph.D. thesis
, Stanford University, Stanford, CA.
24.
Wadcock
,
A. J.
,
1978
, “
Flying-Hot-Wire Study of Two-Dimensional Turbulent Separation on an NACA 4412 Airfoil at Maximum Lift
,”
Ph.D. thesis
, California Institute of Technology, Pasadena, CA.
25.
Rumsey, C.
,
2014
, “
2DN44: 2D NACA 4412 Airfoil Trailing Edge Separation
,” NASA Langley Research Center, Hamoton, VA, accessed Aug. 1, 2016, http://turbmodels.larc.nasa.gov/naca4412sep_val.html
You do not currently have access to this content.