In this work, experimental measurements are made to study wind turbines over complex terrains and in presence of the atmospheric boundary layer. Thrust and power coefficients for single and multiple turbines are measured when introducing sinusoidal hills and spires inducing an artificial atmospheric boundary layer. Additionally, wake interaction effects are studied, and inflow velocity profiles are characterized using hot-wire anemometry. The results indicate that the introduced hills have a positive impact on the wind-turbine performance and that wake-interaction effects are significantly reduced during turbulent inflow conditions.

References

References
1.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
2.
Corbetta
,
G.
,
Pineda
,
I.
, and
Wilkes
,
J.
,
2014
, “
Wind in Power: 2014 European Statistics
,” The European Wind Energy Association, Brussels, Belgium.
3.
Webster
,
D. R.
,
DeGraaff
,
D. B.
, and
Eaton
,
J. K.
,
1996
, “
Turbulence Characteristics of a Boundary Layer Over a Two-Dimensional Bump
,”
J. Fluid Mech.
,
320
, pp.
53
69
.
4.
Helmis
,
C. G.
,
Papadopoulos
,
K. H.
,
Asimakopoulos
,
D. N.
,
Papageorgas
,
P. G.
, and
Soilemes
,
A. T.
,
1995
, “
An Experimental Study of the Near-Wake Structure of a Wind Turbine Operating Over Complex Terrain
,”
Sol. Energy
,
54
(
6
), pp.
413
428
.
5.
Ayotte
,
K. W.
, and
Huges
,
D. E.
,
2004
, “
Observations of Boundary-Layer Wind-Tunnel Flow Over Isolated Ridges of Varying Steepness and Roughness
,”
Boundary-Layer Meteorol.
,
112
(
3
), pp.
525
556
.
6.
Hunt
,
J. C. R.
, and
Snyder
,
W. H.
,
1980
, “
Experiments on Stably and Neutrally Stratified Flow Over a Model Three-Dimensional Hill
,”
J. Fluid Mech.
,
96
(
4
), pp.
671
704
.
7.
Walmsley
,
J. L.
,
Troen
,
I.
,
Lalas
,
D. P.
, and
Mason
,
P. J.
,
1990
, “
Surface-Layer Flow in Complex Terrain: Comparison of Models and Full-Scale Observations
,”
Boundary-Layer Meteorol.
,
52
(
3
), pp.
259
281
.
8.
Kähler
,
C. J.
,
Scharnowski
,
S.
, and
Cierpa
,
C.
,
2016
, “
Highly Resolved Experimental Results of the Separated Flow in a Channel With Streamwise Periodic Constrictions
,”
J. Fluid Mech.
,
796
, pp.
257
284
.
9.
Ruck
,
B.
,
Boes
,
R.
, and
Gruber
,
M.
,
2013
, “
Loss of Wind Power for Wind Turbines Due to an Upstream Hill
,”
Int. J. Energy
,
7
(
4
), pp. 83–93.
10.
Røkenes
,
K.
, and
Krogstad
,
P. Å.
,
2009
, “
Wind Tunnel Simulation of Terrain Effects on Wind Farm Siting
,”
Wind Energy
,
12
(
4
), pp.
391
410
.
11.
Vermeer
,
N. J.
,
Sørensen
,
J. N.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
(
6–7
), pp.
467
510
.
12.
Yang
,
X.
,
Howard
,
K. B.
,
Guala
,
M.
, and
Sotiropoulos
,
F.
,
2015
, “
Effects of a Three-Dimensional Hill on the Wake Characteristics of a Model Wind Turbine
,”
Phys. Fluids
,
27
(
2
), p.
025103
.
13.
Jiménes-Portaz
,
M.
,
Bello-Millán
,
F. J.
,
Folgueras
,
P.
,
Clavero
,
M.
, and
Losada
,
M. A.
,
2016
, “
Wind Flow Around a Wind Turbine System Over Hilly Terrain and Its Environmental Effects: Wind Tunnel Tests
,”
International Conference on Renewable Energies and Power Quality
(
ICREPQ
), Madrid, Spain, May 4–6, pp. 318–321.
14.
Schulz
,
C.
,
Klein
,
L.
,
Weihing
,
P.
,
Lutz
,
T.
, and
Krämer
,
E.
,
2014
, “
CFD Studies on Wind Turbines in Complex Terrain Under Atmospheric Inflow Conditions
,”
J. Phys.: Conf. Ser.
,
524
(1), p. 012134.
15.
Politis
,
E. S.
,
Prospathopoulos
,
J.
,
Cabezon
,
D.
,
Hansen
,
K. S.
,
Chaviaropoulos
,
P. K.
, and
Barthelmie
,
R. J.
,
2012
, “
Modeling Wake Effects in Large Wind Farms in Complex Terrain: The Problem, the Methods, and the Issues
,”
Wind Energy
,
15
(
1
), pp.
161
182
.
16.
Tian
,
W.
,
Ozbay
,
A.
,
Yuan
,
W.
,
Sarakar
,
P.
, and
Hu
,
H.
,
2013
, “
An Experimental Study on the Performances of Wind Turbines Over Complex Terrain
,”
AIAA
Paper No. 2013-0612.
17.
Castellani
,
F.
,
Astolfi
,
D.
,
Burlando
,
M.
, and
Terzi
,
L.
,
2015
, “
Numerical Modeling for Wind Farm Operational Assessment in Complex Terrain
,”
J. Wind Energy Ind. Aerodyn.
,
147
, pp.
320
329
.
18.
Alfredsson
,
P. H.
, and
Dahlberg
,
J. Å.
,
1981
, “
Measurements of Wake Interaction Effects on the Power Output From Small Wind Turbine Models
,” Structures Department, The Aeronautical Research Institute of Sweden, Stockholm, Sweden, Report No. FFA HU-2189.
19.
Adaramola
,
M. S.
, and
Krogstad
,
P. Å.
,
2011
, “
Experimental Investigation of Wake Effects on Wind Turbine Performance
,”
Renewable Energy
,
36
(
8
), pp.
2078
2086
.
20.
Mycek
,
P.
,
Gaurier
,
B.
,
Germain
,
G.
,
Pinon
,
G.
, and
Rivoalen
,
E.
,
2014
, “
Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behavior. Part I: One Single Turbine
,”
Renewable Energy
,
66
, pp.
729
746
.
21.
Mycek
,
P.
,
Gaurier
,
B.
,
Germain
,
G.
,
Pinon
,
G.
, and
Rivoalen
,
E.
,
2014
, “
Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behavior. Part II: Two Interacting Turbines
,”
Renewable Energy
,
68
, pp.
876
892
.
22.
Chatelain
,
P.
,
Backaert
,
S.
,
Winckelmans
,
G.
, and
Kern
,
S.
,
2013
, “
Large Eddy Simulations of Wind Turbine Wakes
,”
Flow Turbul. Combust
,
91
(
3
), pp. 587–605.
23.
Irwin
,
H. P. A. H.
,
1981
, “
The Design of Spires for Wind Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
7
(
3
), pp.
361
366
.
24.
Nilsson
,
K.
,
Ivanell
,
S.
,
Hansen
,
K. S.
,
Mikkelsen
,
R.
,
Sørensen
,
J. N.
,
Breton
,
S. P.
, and
Henningson
,
D.
,
2015
, “
Large-Eddy Simulations of the Lillgrund Wind Farm
,”
Wind Energy
,
18
(
3
), pp.
449
467
.
25.
De Vries
,
O.
,
1983
, “
On the Theory of the Horizontal-Axis Wind Turbine
,”
Ann. Rev. Fluid Mech.
,
15
(
1
), pp.
77
96
.
26.
Segalini
,
A.
, and
Inghels
,
P.
,
2014
, “
Confinement Effects in Wind-Turbine and Propeller Measurements
,”
J. Fluid Mech.
,
756
, pp.
110
129
.
27.
Chamorro
,
L. P.
,
Arndt
,
R. E. A.
, and
Sotiropoulos
,
F.
,
2011
, “
Reynolds Number Dependence of Turbulence Statistics in the Wake of Wind Turbines
,”
Wind Energy
,
15
(
5
), pp.
733
742
.
28.
Krogstad
,
P. Å.
, and
Sætran
,
L.
,
2015
, “
Wind Turbine Wake Interactions: Results From Blind Tests
,”
J. Phys.: Conf. Ser.
,
625
(1), p. 012043.
29.
Ibrahim
,
M.
,
Asultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introducing Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
30.
Mycek
,
P.
,
Gaurier
,
B.
,
Germain
,
G.
,
Pinon
,
G.
, and
Rivoalen
,
E.
,
2013
, “
Numerical and Experimental Study of the Interaction Between Two Marine Current Turbines
,”
Int. J. Marine Energy
,
1
, pp.
70
83
.
31.
Yamamoto
,
M.
,
2016
, “
Present State and Future Prospect of CFD in Wind Turbine Design
,”
2nd International Conference On Next Generation Wind Energy (ICNGWE)
, Lund, Sweden, Aug. 24–26, Paper No. 31.
You do not currently have access to this content.