In this work, experimental measurements are made to study wind turbines over complex terrains and in presence of the atmospheric boundary layer. Thrust and power coefficients for single and multiple turbines are measured when introducing sinusoidal hills and spires inducing an artificial atmospheric boundary layer. Additionally, wake interaction effects are studied, and inflow velocity profiles are characterized using hot-wire anemometry. The results indicate that the introduced hills have a positive impact on the wind-turbine performance and that wake-interaction effects are significantly reduced during turbulent inflow conditions.
Issue Section:
Alternative Energy Sources
References
1.
Gupta
, A. K.
, 2015
, “Efficient Wind Energy Conversion: Evolution to Modern Design
,” ASME J. Energy Resour. Technol.
, 137
(5
), p. 051201
.2.
Corbetta
, G.
, Pineda
, I.
, and Wilkes
, J.
, 2014
, “Wind in Power: 2014 European Statistics
,” The European Wind Energy Association, Brussels, Belgium.3.
Webster
, D. R.
, DeGraaff
, D. B.
, and Eaton
, J. K.
, 1996
, “Turbulence Characteristics of a Boundary Layer Over a Two-Dimensional Bump
,” J. Fluid Mech.
, 320
, pp. 53
–69
.4.
Helmis
, C. G.
, Papadopoulos
, K. H.
, Asimakopoulos
, D. N.
, Papageorgas
, P. G.
, and Soilemes
, A. T.
, 1995
, “An Experimental Study of the Near-Wake Structure of a Wind Turbine Operating Over Complex Terrain
,” Sol. Energy
, 54
(6
), pp. 413
–428
.5.
Ayotte
, K. W.
, and Huges
, D. E.
, 2004
, “Observations of Boundary-Layer Wind-Tunnel Flow Over Isolated Ridges of Varying Steepness and Roughness
,” Boundary-Layer Meteorol.
, 112
(3
), pp. 525
–556
.6.
Hunt
, J. C. R.
, and Snyder
, W. H.
, 1980
, “Experiments on Stably and Neutrally Stratified Flow Over a Model Three-Dimensional Hill
,” J. Fluid Mech.
, 96
(4
), pp. 671
–704
.7.
Walmsley
, J. L.
, Troen
, I.
, Lalas
, D. P.
, and Mason
, P. J.
, 1990
, “Surface-Layer Flow in Complex Terrain: Comparison of Models and Full-Scale Observations
,” Boundary-Layer Meteorol.
, 52
(3
), pp. 259
–281
.8.
Kähler
, C. J.
, Scharnowski
, S.
, and Cierpa
, C.
, 2016
, “Highly Resolved Experimental Results of the Separated Flow in a Channel With Streamwise Periodic Constrictions
,” J. Fluid Mech.
, 796
, pp. 257
–284
.9.
Ruck
, B.
, Boes
, R.
, and Gruber
, M.
, 2013
, “Loss of Wind Power for Wind Turbines Due to an Upstream Hill
,” Int. J. Energy
, 7
(4
), pp. 83–93.10.
Røkenes
, K.
, and Krogstad
, P. Å.
, 2009
, “Wind Tunnel Simulation of Terrain Effects on Wind Farm Siting
,” Wind Energy
, 12
(4
), pp. 391
–410
.11.
Vermeer
, N. J.
, Sørensen
, J. N.
, and Crespo
, A.
, 2003
, “Wind Turbine Wake Aerodynamics
,” Prog. Aerosp. Sci.
, 39
(6–7
), pp. 467
–510
.12.
Yang
, X.
, Howard
, K. B.
, Guala
, M.
, and Sotiropoulos
, F.
, 2015
, “Effects of a Three-Dimensional Hill on the Wake Characteristics of a Model Wind Turbine
,” Phys. Fluids
, 27
(2
), p. 025103
.13.
Jiménes-Portaz
, M.
, Bello-Millán
, F. J.
, Folgueras
, P.
, Clavero
, M.
, and Losada
, M. A.
, 2016
, “Wind Flow Around a Wind Turbine System Over Hilly Terrain and Its Environmental Effects: Wind Tunnel Tests
,” International Conference on Renewable Energies and Power Quality
(ICREPQ
), Madrid, Spain, May 4–6, pp. 318–321.14.
Schulz
, C.
, Klein
, L.
, Weihing
, P.
, Lutz
, T.
, and Krämer
, E.
, 2014
, “CFD Studies on Wind Turbines in Complex Terrain Under Atmospheric Inflow Conditions
,” J. Phys.: Conf. Ser.
, 524
(1), p. 012134.15.
Politis
, E. S.
, Prospathopoulos
, J.
, Cabezon
, D.
, Hansen
, K. S.
, Chaviaropoulos
, P. K.
, and Barthelmie
, R. J.
, 2012
, “Modeling Wake Effects in Large Wind Farms in Complex Terrain: The Problem, the Methods, and the Issues
,” Wind Energy
, 15
(1
), pp. 161
–182
.16.
Tian
, W.
, Ozbay
, A.
, Yuan
, W.
, Sarakar
, P.
, and Hu
, H.
, 2013
, “An Experimental Study on the Performances of Wind Turbines Over Complex Terrain
,” AIAA
Paper No. 2013-0612.17.
Castellani
, F.
, Astolfi
, D.
, Burlando
, M.
, and Terzi
, L.
, 2015
, “Numerical Modeling for Wind Farm Operational Assessment in Complex Terrain
,” J. Wind Energy Ind. Aerodyn.
, 147
, pp. 320
–329
.18.
Alfredsson
, P. H.
, and Dahlberg
, J. Å.
, 1981
, “Measurements of Wake Interaction Effects on the Power Output From Small Wind Turbine Models
,” Structures Department, The Aeronautical Research Institute of Sweden, Stockholm, Sweden, Report No. FFA HU-2189.19.
Adaramola
, M. S.
, and Krogstad
, P. Å.
, 2011
, “Experimental Investigation of Wake Effects on Wind Turbine Performance
,” Renewable Energy
, 36
(8
), pp. 2078
–2086
.20.
Mycek
, P.
, Gaurier
, B.
, Germain
, G.
, Pinon
, G.
, and Rivoalen
, E.
, 2014
, “Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behavior. Part I: One Single Turbine
,” Renewable Energy
, 66
, pp. 729
–746
.21.
Mycek
, P.
, Gaurier
, B.
, Germain
, G.
, Pinon
, G.
, and Rivoalen
, E.
, 2014
, “Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behavior. Part II: Two Interacting Turbines
,” Renewable Energy
, 68
, pp. 876
–892
.22.
Chatelain
, P.
, Backaert
, S.
, Winckelmans
, G.
, and Kern
, S.
, 2013
, “Large Eddy Simulations of Wind Turbine Wakes
,” Flow Turbul. Combust
, 91
(3
), pp. 587–605.23.
Irwin
, H. P. A. H.
, 1981
, “The Design of Spires for Wind Simulation
,” J. Wind Eng. Ind. Aerodyn.
, 7
(3
), pp. 361
–366
.24.
Nilsson
, K.
, Ivanell
, S.
, Hansen
, K. S.
, Mikkelsen
, R.
, Sørensen
, J. N.
, Breton
, S. P.
, and Henningson
, D.
, 2015
, “Large-Eddy Simulations of the Lillgrund Wind Farm
,” Wind Energy
, 18
(3
), pp. 449
–467
.25.
De Vries
, O.
, 1983
, “On the Theory of the Horizontal-Axis Wind Turbine
,” Ann. Rev. Fluid Mech.
, 15
(1
), pp. 77
–96
.26.
Segalini
, A.
, and Inghels
, P.
, 2014
, “Confinement Effects in Wind-Turbine and Propeller Measurements
,” J. Fluid Mech.
, 756
, pp. 110
–129
.27.
Chamorro
, L. P.
, Arndt
, R. E. A.
, and Sotiropoulos
, F.
, 2011
, “Reynolds Number Dependence of Turbulence Statistics in the Wake of Wind Turbines
,” Wind Energy
, 15
(5
), pp. 733
–742
.28.
Krogstad
, P. Å.
, and Sætran
, L.
, 2015
, “Wind Turbine Wake Interactions: Results From Blind Tests
,” J. Phys.: Conf. Ser.
, 625
(1), p. 012043.29.
Ibrahim
, M.
, Asultan
, A.
, Shen
, S.
, and Amano
, R. S.
, 2015
, “Advances in Horizontal Axis Wind Turbine Blade Designs: Introducing Slots and Tubercle
,” ASME J. Energy Resour. Technol.
, 137
(5
), p. 051205
.30.
Mycek
, P.
, Gaurier
, B.
, Germain
, G.
, Pinon
, G.
, and Rivoalen
, E.
, 2013
, “Numerical and Experimental Study of the Interaction Between Two Marine Current Turbines
,” Int. J. Marine Energy
, 1
, pp. 70
–83
.31.
Yamamoto
, M.
, 2016
, “Present State and Future Prospect of CFD in Wind Turbine Design
,” 2nd International Conference On Next Generation Wind Energy (ICNGWE)
, Lund, Sweden, Aug. 24–26, Paper No. 31.Copyright © 2017 by ASME
You do not currently have access to this content.