Diffuser-augmented wind turbines (DAWTs) can significantly increase the performance of the rotor. Multirotor systems (MRSs) have a lot of merits such as significant saving mass and overall cost of the wind turbine system. A MRS is defined as containing more than one rotor in a single structure. In the present research, DAWTs are studied in a MRS. In wind tunnel experiments, the power output and aerodynamics of two and three DAWTs placed in close vicinity, in side-by-side arrangements, have been investigated, along with circular disks and conventional wind turbines in the same configurations as the MRS. Results show a significant increase of up to 12% in total power output of the MRS with DAWTs compared to the sum of the stand-alone same turbines. The results can be explained by observing the bluff body flow phenomena in the wake interference around the multiple circular disks. Those flow phenomena are due to the accelerated gap flows and those biasing in the flow direction caused by the vortex interactions in the gap.

References

References
1.
MHI VESTAS Offshore Wind
,
2016
, MHI Vestas Offshore Wind A/S, Aarhus, Denmark, accessed May 19, 2016, http://www.mhivestasoffshore.com/innovations/
2.
Jamieson
,
P.
, and
Branney
,
M.
,
2012
, “
Multi-Rotors; A Solution to 20 MW and Beyond?
,”
Energy Procedia
,
24
, pp.
52
59
.
3.
Jamieson
,
P.
,
2011
,
Innovation in Wind Turbine Design
, 1st ed., Vol.
2
,
Wiley
,
Hoboken, NJ
, pp.
229
238
.
4.
Sieros
,
G.
,
Chaviaropoulos
,
P.
,
Sørensen
,
J. D.
,
Bulder
,
B. H.
, and
Jamieson
,
P.
,
2012
, “
Upscaling Wind Turbines: Theoretical and Practical Aspects and Their Impact on the Cost of Energy
,”
Wind Energy
,
15
(
1
), pp.
3
17
.
5.
Hofmann
,
M.
, and
Sperstad
,
I. B.
,
2014
, “
Will 10 MW Wind Turbines Bring Down the Operation and Maintenance Cost of Offshore Wind Farms?
,”
Energy Procedia
,
53
, pp.
231
238
.
6.
Heronemus
,
W.
,
1972
, “
Pollution-Free Energy From Offshore Winds
,”
8th Annual Conference and Exposition
, Marine Technology Society, Washington, DC.
7.
Smulders
,
P. T.
,
Orbons
,
S.
, and
Moes
,
C.
,
1984
, “
Aerodynamic Interaction of Two Rotors Set Next to Each Other in One Plane
,”
European Wind Energy Conference
, Hamburg, Oct. 22–26, pp.
529
533
.
8.
Ransom
,
D.
,
Moore
,
J. J.
, and
Heronemus-Pate
,
M.
,
2010
, “
Performance of Wind Turbines in a Closely Spaced Array
,”
Renewable Energy World
,
2
(
3
), pp.
32
36
.
9.
Chasapogiannis
,
P.
,
Prospathopoulos
,
J. M.
,
Voutsinas
,
S. G.
, and
Chaviaropoulos
,
T. K.
,
2014
, “
Analysis of the Aerodynamic Performance of the Multi-Rotor Concept
,”
J. Phys.: Conf. Ser.
,
524
, p.
012084
.
10.
Lilley
,
G. M.
, and
Rainbird
,
W. J.
,
1956
, “
A Preliminary Report on the Design and Performance of a Ducted Windmill
,” College of Aeronautics, Cranfield, Report No. 102.
11.
Igra
,
O.
,
1981
, “
Research and Development for Shrouded Wind Turbines
,”
Energy Convers. Manage.
,
21
(
1
), pp.
13
48
.
12.
Gilbert
,
B. L.
, and
Foreman
,
K. M.
,
1983
, “
Experiments With a Diffuser-Augmented Model Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
105
(
1
), pp.
46
53
.
13.
Abe
,
K.
,
Nishida
,
M.
,
Sakurai
,
A.
,
Ohya
,
Y.
,
Kihara
,
H.
,
Wada
,
E.
, and
Sato
,
K.
,
2005
, “
Experimental and Numerical Investigations of Flow Fields Behind a Small Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
93
(
12
), pp.
951
970
.
14.
Hansen
,
M. O. L.
,
Sørensen
,
N. N.
, and
Flay
,
R. G. J.
,
2000
, “
Effect of Placing a Diffuser Around a Wind Turbine
,”
Wind Energy
,
3
(
4
), pp.
207
213
.
15.
van Bussel
,
G. J. W.
,
2007
, “
The Science of Making More Torque From Wind: Diffuser Experiments and Theory Revisited
,”
J. Phys.: Conf. Ser.
,
75
, p.
012010
.
16.
Ohya
,
Y.
,
Karasudani
,
T.
,
Sakurai
,
A.
,
Abe
,
K.
, and
Inoue
,
M.
,
2008
, “
Development of a Shrouded Wind Turbine With a Flanged Diffuser
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6
), pp.
524
539
.
17.
Ohya
,
Y.
, and
Karasudani
,
T.
,
2010
, “
A Shrouded Wind Turbine Generating High Output Power With Wind Lens Technology
,”
Energies
,
3
(
4
), pp.
634
649
.
18.
Takahashi
,
S.
,
Hata
,
Y.
,
Ohya
,
Y.
,
Karasudani
,
T.
, and
Uchida
,
T.
,
2012
, “
Behavior of the Blade Tip Vortices of a Wind Turbine Equipped With a Brimmed-Diffuser Shroud
,”
Energies
,
5
(
12
), pp.
5229
5242
.
19.
Ohya
,
Y.
,
Uchida
,
T.
,
Karasudani
,
T.
,
Hasegawa
,
M.
, and
Kume
,
H.
,
2012
, “
Numerical Studies of Flow Around a Wind Turbine Euipped With a Flanged-Diffuser Shroud Using an Actuator-Disk Model
,”
Wind Eng.
,
36
(
4
), pp.
455
472
.
20.
Wang
,
S. H.
, and
Chen
,
S. H.
,
2009
, “
The Study of Interference Effect for Cascaded Diffuser Augmented Wind Turbines
,”
7th Asia-Pacific Conference on Wind Engineering
(
APCWE
), Taipei, Taiwan, Nov. 8–12, pp.
8
12
.
21.
Göltenbott
,
U.
,
Ohya
,
Y.
,
Karasudani
,
T.
, and
Jamieson
,
P.
,
2015
, “
Aerodynamics of Clustered Wind Lens Turbines
,”
ASME-JSME-KSME Joint Fluids Engineering Conference
, Seoul, Korea, July 26–31,
Paper No. AJK2015-FED
.
22.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
,
Karasudani
,
T.
,
Yoshida
,
S.
, and
Jamieson
,
P.
,
2016
, “
Power Augmentation of Shrouded Wind Turbines in a Multi-Rotor System
,”
ASME J. Energy Resour. Technol.
, accepted.
23.
Göltenbott
,
U.
,
Ohya
,
Y.
,
Yoshida
,
S.
, and
Jamieson
,
P.
,
2016
, “
Flow Interaction of Diffuser Augmented Wind Turbines
,”
J. Phys.: Conf. Ser.
,
753
, p. 022038.
24.
Matsumiya
,
T.
,
Kogaki
,
T.
,
Iida
,
K.
, and
Kieda
,
K.
,
2001
, “
A Development of High Performance Aerofoil
,”
Turbomachinery
,
29
, pp.
519
524
.
25.
Ohya
,
Y.
,
Okajima
,
A.
, and
Hayashi
,
M.
,
1989
, “
Wake Interference and Vortex Shedding
,”
Encyclopedia of Fluid Mechanics
, Vol.
8
,
N. P. Cheremisinoff, Gulf Publishing Corporation
, Houston, TX, pp.
323
389
.
26.
Ohya
,
Y.
,
2014
, “
Bluff Body Flow and Vortex—Its Application to Wind Turbines
,”
Fluid Dyn. Res.
,
46
(
6
), p.
061423
.
You do not currently have access to this content.