Wind energy is a well proven and cost-effective technology and expected to be a promising technology in which industry responds to the environmental targets—so becoming an important source of power generation in years to come. This paper focuses on the current status of wind energy and more advanced subjects needed to understand the current technology in the wind power engineering.

References

References
1.
Gupta
,
A. K.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
2.
Baranowski, R., Oteri, F., Baring-Gould, I., and Tegen, S.,
2013
, “
Utility-Scale Land-Based 80-Meter Wind Maps
,” Wind Power America, accessed Sept. 5, 2017, http://www.fourcornerswind.org/resources
3.
Dunne, D.,
2017
, “
The World's Biggest Wind Turbine: Stunning Images Show the Monster Structure Bigger Than the London Eye With Blades That are 80 Metres Long
,” Daisy Dunne for Mailonline, Daily Mail, London, accessed Sept. 6, 2017, http://www.dailymail.co.uk/sciencetech/article-4342966/Wind-turbine-world-s-biggest-722-feet.html#ixzz4ps FIw0We
4.
Fried, L.,
2012
, “
GWEC Global Wind Statistics 2012
,” Global Wind Energy Council, Brussels, Belgium, accessed Sept. 5, 2017, https://www.gwec.net/wp-content/uploads/2013/02/GWEC-PRstats-2012_english.pdf
5.
Dumblauskas, S.,
2010
, “
BTM Forecasts 340-GW of Wind Energy by 2013
,” AWEA Offshore Wind Power, accessed Sept. 5, 2017, http://www.renewableenergyworld.com/articles/2009/03/btm-forecasts-340-gw-of-wind-by-2013.html
6.
Schreck, S., Lundquist, J., and Shaw, W., 2008, “Research Needs for Wind Resource Characterization,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL/TP-500-43521
.https://www.nrel.gov/docs/fy08osti/43521.pdf
7.
Blair, N., 2017, “Geospatial Data Science Publications,” National Renewable Energy Laboratory, Golden, CO (permission for citation granted).
8.
Laxson, A., Hand, M., and Blair, N., 2006, “High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500, 40482.
9.
Dossena
,
V.
,
Persico
,
G.
,
Paradiso
,
B.
,
Battisti
,
L.
,
Dell'Anna
,
S.
,
Brighenti
,
A.
, and
Benini
,
E.
,
2015
, “
An Experimental Study of the Aerodynamics and Performance of a Vertical Axis Wind Turbine in a Confined and Unconfined Environment
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051207
.
10.
Ferreira
,
C. J. S.
,
Bijl
,
H.
,
van Bussel
,
G.
, and
van Kulik
,
G.
, “
Simulating Dynamic Stall in a 2D VAWT: Modeling Strategy, Verification and Validation With Particle Image Velocimetry Data
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012023
.
11.
Matt
,
A.
,
Strong
,
S.
,
ElGammal
,
T.
, and
Amano
,
R.
,
2015
, “
Development of Novel Self-Healing Polymer Composites for Use in Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p. 051202.
12.
Huang
,
C.-Y.
,
Trask
,
R. S.
, and
Bond
,
I. P.
,
2010
, “
Characterization and Analysis of Carbon Fibre-Reinforced Polymer Composite Laminates With Embedded Circular Vasculature
,”
J. R. Soc. Interface
,
7
(
49
), pp.
1229
1241
.
13.
Motuku
,
M.
,
Vaidya
,
U. K.
, and
Janowski
,
G. M.
,
1999
, “
Parametric Studies on Self-Repairing Approaches for Resin Infused Composites Subjected to Low Velocity Impact
,”
Smart Mater. Struct.
, 8, pp. 623–638.
14.
Matt
,
A. K. K.
,
Beyhaghi
,
S.
,
Amano
,
R. S.
, and
Guo
,
J.
,
2017
, “
Self-Healing of Wind Turbine Blades Using Microscale Vascular Vessels
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051208
.
15.
Franco
,
J. A.
,
Jauregui
,
J. C.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
16.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051204
.
17.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Investigation of Flow Over an Airfoil Using a Hybrid Detached Eddy Simulation–Algebraic Stress Turbulence Model
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051206
.
18.
Ibrahim
,
M.
,
Alsultan
,
A.
,
Shen
,
S.
, and
Amano
,
R. S.
,
2015
, “
Advances in Horizontal Axis Wind Turbine Blade Designs: Introduction of Slots and Tubercle
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051205
.
19.
Jackson
,
R. S.
, and
Amano
,
R.
,
2017
, “
Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051207
.
20.
Okulov, V. L., Mikkelsen, R.,
Sørensen
,
J. N.
,
Naumov
,
I. V.
, and
Tsoy
,
M. A.
,
2017
, “
Power Properties of Two Interacting Wind Turbine Rotors
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051210
.
21.
AlSam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2015
, “
The Influence of Sea Waves on Offshore Wind Turbine Aerodynamics
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051209
.
22.
AlSam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
Wind–Wave Interaction Effects on a Wind Farm Power Production
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051213
.
23.
Crespo
,
A.
,
Hernandez
,
J.
, and
Frandsen
,
S.
,
1999
, “
Survey of Modeling Methods for Wind Turbine Wakes and Wind Farms
,”
Wind Energy
,
2
(
1
), pp.
1
24
.
24.
Vermeer
,
L.
,
Sorenson
,
J.
, and
Crespo
,
A.
,
2003
, “
Wind Turbine Wake Aerodynamics
,”
Prog. Aerosp. Sci.
,
39
, pp.
467
510
.
25.
Hansen
,
M.
,
Sorensen
,
J.
,
Voutsinas
,
S.
,
Sorensen
,
N.
, and
Madsen
,
H. A.
,
2006
, “
State of the Art in Wind Turbine Aerodynamics and Aeroelasticity
,”
Prog. Areosp. Sci.
,
42
(
4
), pp.
285
330
.
26.
Sanderse
,
B.
,
van der Pijl
,
S.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
27.
Hyvärinen
,
A.
, and
Segalini
,
A.
,
2017
, “
Effects From Complex Terrain on Wind-Turbine Performance
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051205
.
28.
Hattori
,
H.
,
Houra
,
T.
,
Kono
,
A.
, and
Yoshikawa
,
S.
,
2017
, “
Computational Fluid Dynamics Study for Improvement of Prediction of Various Thermally Stratified Turbulent Boundary Layers
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051209
.
29.
Uemura
,
Y.
,
Tanabe
,
Y.
,
Mamori
,
H.
,
Fukushima
,
N.
, and
Yamamoto
,
M.
,
2017
, “
Wake Deflection in Long Distance From a Yawed Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051212
.
30.
Wahlquist
,
C.
,
2015
, “
Wind Farm Study Finds ‘No Direct Evidence’ They Affect Health
,” Wind Power, Xinjiang, China, accessed Sept. 5, 2017, https://www.theguardian.com/environment/2015/feb/11/wind-farm-study-finds-no-direct-evidence-they-affect-health
31.
Marini
,
M.
,
Baccoli
,
R.
,
Mastino
,
C. C.
,
Bella
,
A. D.
,
Bernardini
,
C.
, and
Masullo
,
M.
,
2017
, “
Assessment of the Noise Generated by Wind Turbines at Low Frequencies
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051215
.
32.
Ohya
,
Y.
,
Miyazaki
,
J.
,
Göltenbott
,
U.
, and
Watanabe
,
K.
,
2017
, “
Power Augmentation of Shrouded Wind Turbines in a Multirotor System
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051202
.
33.
Musial
,
W.
, and
Ram
,
B.
,
2010
, “
Large-Scale Offshore Wind Power in the United States
,” National Renewable Energy Laboratory, Golden, CO, Report No.
NREL/TP-500-40745
.https://www.nrel.gov/docs/fy10osti/40745.pdf
34.
Kraemer
,
S.
,
2010
, “
Innowind and Hexicon Create Powerful Modular Wind+Wave Farms
,” Blue Living Ideas, Blue Living Ideas, Direct Relief, accessed Sept. 9, 2017, http://bluelivingideas.com/2010/04/02/innowind-hexicon-create-powerful-modular-wind-farms/
35.
Esteban
,
M. D.
,
López-Gutiérrez
,
J.-S.
,
Negro
,
V.
,
Matutano
,
C.
,
García-Flores
,
F. M.
, and
Millán
,
M. Á.
,
2015
, “
Offshore Wind Foundation Design: Some Key Issues
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051211
.
36.
Sato
,
Y.
,
Ohya
,
Y.
,
Kyozuka
,
Y.
, and
Tsutsumi
,
T.
,
2014
, “
The Floating Offshore Wind Turbine With PC Floating Structure—Hakata Bay Floating Offshore Wind Turbine
,” Japan Prestressed Concrete Institute, Japan, accessed Aug. 19, 2017, http://www.jpci.or.jp/NR/pdf/44.pdf
37.
Pallarol
,
J. G.
,
Sundén
,
B.
, and
Wu
,
Z.
,
2014
, “
On Ice Accretion for Wind Turbines and Influence of Some Parameters
,”
Aerodynamics of Wind Turbines: Emerging Topics
,
R. S.
Amano
and
B.
Sunden
, eds.,
WIT Press
,
Southampton, UK
.
38.
Walsh
,
M.
,
2010
, “
Accretion and Removal of Wind Turbine Icing in Polar Conditions
,” Master thesis, Aalto University, Helsinki, Finland.
39.
Sunden
,
B.
, and
Wu
,
Z.
,
2015
, “
On Icing and Icing Mitigation of Wind Turbine Blades in Cold Climate
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051203
.
40.
Sunden
,
B.
, and
Wu
,
Z.
,
2017
, “
On Heat Transfer Issues for Wind Energy Systems
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051201
.
You do not currently have access to this content.