Reservoir characterization is needed for estimating reservoir properties and forecasting production rates in a reliable manner. However, it is challenging to figure out reservoir properties of interest due to limited information. Therefore, well-designed reservoir models, which reflect characteristics of a true field, should be selected and fine-tuned. We propose a novel scheme of generating initial reservoir models by using static data and production history data available. We select representative reservoir models by projecting reservoir models onto a two-dimensional (2D) plane using principal component analysis (PCA) and calculating errors of production rates against observed data. These selected models, which will have similar geological properties with the reference, are used to regenerate models by perturbing along the boundary of the different facies. These regenerated models have all the different facies distributions but share principal characteristics based on the selected models. We compare cases using 400 ensemble members, 100 models with unbiased uniform sampling, and 100 regenerated models by the proposed method. We analyze two synthetic reservoirs with different permeability distributions: one is a typical heterogeneous reservoir and the other is a channel reservoir with a bimodal permeability distribution. Compared to the cases using all the 400 models with ensemble Kalman filter (EnKF), the simulation time is dramatically reduced to 4.7%, while the prediction quality on oil and water productions is improved. Even in the more complex reservoir case, the proposed method shows great improvements with reduced uncertainties against the other cases.

References

References
1.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
2.
Gao
,
G.
,
Zafari
,
M.
, and
Reynolds
,
A. C.
,
2006
, “
Quantifying Uncertainty for the PUNQ-S3 Problem in a Bayesian Setting With RML and EnKF
,”
SPE J.
,
11
(
4
), pp.
506
515
.
3.
Skjervheim
,
J.-A.
,
Evensen
,
G.
,
Aanonsen
,
S. I.
,
Ruud
,
B. O.
, and
Johansen
,
T. A.
,
2007
, “
Incorporating 4D Seismic Data in Reservoir Simulation Models Using Ensemble Kalman Filter
,”
SPE J.
,
12
(
3
), pp.
282
292
.
4.
Kim
,
S.
,
Jung
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Initial Ensemble Design Scheme for Effective Characterization of Three-Dimensional Channel Gas Reservoirs With an Aquifer
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022911
.
5.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
79
87
.
6.
Nævdal
,
G.
,
Mannseth
,
T.
, and
Vefring
,
E. H.
,
2002
, “
Near-Well Reservoir Monitoring Through Ensemble Kalman Filter
,”
SPE/DOE 13th Symposium of Improved Oil Recovery
, Tulsa, OK, Apr. 13–17,
SPE
Paper No. 75235.
7.
Gu
,
Y.
, and
Oliver
,
D. S.
,
2005
, “
History Matching of the PUNQ-S3 Reservoir Model Using the Ensemble Kalman Filter
,”
SPE J.
,
10
(
2
), pp.
217
224
.
8.
Chang
,
Y.
,
Stordal
,
A. S.
, and
Valestrand
,
R.
,
2016
, “
Integrated Work Flow of Preserving Facies Realism in History Matching: Application to the Brugge Field
,”
SPE J.
,
21
(
4
), pp.
1413
1424
.
9.
Lee
,
K.
,
Jung
,
S. P.
,
Lee
,
T.
, and
Choe
,
J.
,
2016
, “
Use of Clustered Covariance and Selective Measurement Data in Ensemble Smoother for Three-Dimensional Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022905
.
10.
Kang
,
B.
,
Yang
,
H.
,
Lee
,
K.
, and
Choe
,
J.
,
2017
, “
Ensemble Kalman Filter With Principal Component Analysis Assisted Sampling for Channelized Reservoir Characterization
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032907
.
11.
Kang
,
B.
, and
Choe
,
J.
,
2017
, “
Initial Model Selection for Efficient History Matching of Channel Reservoirs Using Ensemble Smoother
,”
J. Pet. Sci. Eng.
,
152
, pp.
294
308
.
12.
Jafarpour
,
B.
, and
McLaughlin
,
D. B.
,
2009
, “
Estimating Channelized-Reservoir Permeabilities With the Ensemble Kalman Filter: The Importance of Ensemble Design
,”
SPE J.
,
14
(
2
), pp.
374
388
.
13.
Shin
,
Y.
,
Jeong
,
H.
, and
Choe
,
J.
,
2010
, “
Reservoir Characterization Using an EnKF and a Non-Parametric Approach for Highly Non-Gaussian Permeability Fields
,”
Energy Sources, Part A
,
32
(
16
), pp.
1569
1578
.
14.
Dovera
,
L.
, and
Della Rossa
,
E.
,
2011
, “
Multimodal Ensemble Kalman Filtering Using Gaussian Mixture Models
,”
Comput. Geosci.
,
15
(
2
), pp.
307
323
.
15.
Liao
,
Q.
, and
Zhang
,
D.
,
2015
, “
Data Assimilation for Strongly Nonlinear Problems by Transformed Ensemble Kalman Filter
,”
SPE J.
,
20
(
1
), pp.
202
221
.
16.
Evensen
,
G.
,
2004
, “
Sampling Strategies and Square Root Analysis Schemes for the EnKF
,”
Ocean Dyn.
,
54
(
6
), pp.
539
560
.
17.
Aanonsen
,
S. I.
,
Nævdal
,
G.
,
Oliver
,
D. S.
,
Reynolds
,
A. C.
, and
Valle ̀s
,
B.
,
2009
, “
The Ensemble Kalman Filter in Reservoir Engineering—A Review
,”
SPE J.
,
14
(
3
), pp.
393
412
.
18.
Sætrom
,
J.
,
Hove
,
J.
,
Skjervheim
,
J. A.
, and
Vabø
,
J. G.
,
2012
, “
Improved Uncertainty Quantification in the Ensemble Kalman Filter Using Statistical Model-Selection Techniques
,”
SPE J.
,
17
(
1
), pp.
152
162
.
19.
Patel
,
R. G.
,
Trivedi
,
J.
,
Rahim
,
S.
, and
Li
,
Z.
,
2015
, “
Initial Sampling of Ensemble for Steam-Assisted-Gravity-Drainage-Reservoir History Matching
,”
SPE J.
,
54
(
6
), pp.
424
441
.
20.
Kang
,
B.
,
Lee
,
K.
, and
Choe
,
J.
,
2016
, “
Improvement of Ensemble Smoother With SVD-Assisted Sampling Scheme
,”
J. Pet. Sci. Eng.
,
141
, pp.
114
124
.
21.
Suzuki
,
S.
,
Caumon
,
G.
, and
Caers
,
J.
,
2008
, “
Dynamic Data Integration for Structural Modeling: Model Screening Approach Using a Distance-Based Model Parameterization
,”
Comput. Geosci.
,
12
(
1
), pp.
105
119
.
22.
Scheidt
,
C.
, and
Caers
,
J.
,
2009
, “
Uncertainty Quantification in Reservoir Performance Using Distances and Kernel Methods—Application to a West Africa Deepwater Turbidite Reservoir
,”
SPE J.
,
14
(
4
), pp.
680
692
.
23.
Park
,
J.
,
Jin
,
J.
, and
Choe
,
J.
,
2015
, “
Uncertainty Quantification Using Streamline Based Inversion and Distance Based Clustering
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012906
.
24.
Park
,
K.
, and
Choe
,
J.
,
2006
, “
Use of Ensemble Kalman Filter to 3-Dimensional Reservoir Characterization During Waterflooding
,”
SPE EUROPEC/EAGE Annual Conference and Exhibition
, Vienna, Austria, June 12–15,
SPE
Paper No. 100178.
25.
Jeong
,
H.
,
Ki
,
S.
, and
Choe
,
J.
,
2010
, “
Reservoir Characterization From Insufficient Static Data Using Gradual Deformation Method With Ensemble Kalman Filter
,”
Energy Sources, Part A
,
32
(
10
), pp.
942
951
.
26.
Caers
,
J.
,
2003
, “
History Matching Under Training-Image-Based Geological Model Constraints
,”
SPE J.
,
8
(
3
), pp.
218
226
.
27.
Idowu
,
N. A.
,
Nardi
,
C.
,
Long
,
H.
,
Varslot
,
T.
, and
Øren
,
P. E.
,
2014
, “
Effects of Segmentation and Skeletonization Algorithms on Pore Networks and Predicted Multiphase-Transport Properties of Reservoir-Rock Samples
,”
SPE J.
,
17
(
4
), pp.
473
483
.
You do not currently have access to this content.